
KNPR 8750.1
 Rev. BASIC

Kennedy NASA Procedural Requirements

Effective Date: August 14, 2009

Expiration Date: August 14, 2014

Responsible Office: Safety and Mission Assurance

Software Assurance Procedural Requirements

National Aeronautics and
Space Administration

John F. Kennedy Space Center

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

TABLE OF CONTENTS
PREFACE...4

P.1 PURPOSE ...4
P.2 APPLICABILITY ..4
P.3 AUTHORITY..5
P.4 APPLICABLE DOCUMENTS ..5
P.5 SUPERSESSION ..5
P.6 VARIANCES..5

CHAPTER 1: GENERAL...6
1.1 Overview ..6

1.1.1 Definition of the Software Assurance Process ...6
1.1.2 Methodology ...6
1.1.3 Software Assurance Participants ...6
1.1.4 Acquirer and Provider Roles ..7

1.2 Roles and Responsibilities...8
1.2.1 Director, NASA-KSC Safety and Mission Assurance...8
1.2.2 Program / Project / Facility Management ...8

1.3 General Requirements...8
CHAPTER 2: NASA S&MA REQUIREMENTS...10

2.1 Software Assurance Management and Planning...10
2.2 Reviews, Audits, and Assessments ...10
2.3 Software Acceptance/Operation/Maintenance/Retirement ..10

CHAPTER 3: SOFTWARE ASSURANCE REQUIREMENTS FOR PROGRAMS/PROJECTS/
FACILITIES ..11

3.1 Planning ...11
3.2 Software Assurance Classification Assessment Process (SACA)12
3.3 Records..13
3.4 Reporting ...13
3.5 Reviews/Audits/Assessment..13
3.6 Discipline-Specific Requirements ..14

3.6.1 Software Quality ...14
3.6.2 Software Safety ..15
3.6.3 Software Reliability ...15
3.6.4 Software Verification and Validation...16
3.6.5 Software IV&V ..16

CHAPTER 4: SOFTWARE SAFETY REQUIREMENTS FOR PROGRAMS/PROJECTS/
FACILITIES ..17

4.1 Software Safety Criticality Evaluation ..17
4.2 Software Safety Plan ...18
4.3 Documentation...18
4.4 Traceability...18

 Page 2 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

4.5 Discrepancy and Problem Reporting and Tracking ...19
4.6 Software Configuration Management ..19
4.7 Software Hazard Analysis..19
4.8 Software Safety Analysis ...19

4.8.1 General..19
4.8.2 Software Safety for Requirements ...20
4.8.3 Software Safety for Design...20
4.8.4 Software Safety for Implementation ...21
4.8.5 Software Safety for Testing ..21
4.8.6 Software Safety for Certification...22
4.8.7 Operational Use of Safety-Critical Software...22

APPENDIX A: DEFINITIONS ..23
APPENDIX B: ABBREVIATIONS AND ACRONYMS ..29
APPENDIX C: DETERMINATION OF SOFTWARE ASSURANCE LEVEL OF EFFORT........30

 Page 3 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

PREFACE

P.1 PURPOSE

This Kennedy NASA Procedural Requirements (KNPR) establishes the minimum requirements
for the development, documentation, and implementation of a Software Assurance Program at
John F. Kennedy Space Center (KSC) and establishes KSC requirements based on the
Software Assurance Requirements of NASA-STD-8739.8, NASA Software Assurance Standard,
and NASA-STD-8719.13, NASA Software Safety Standard. The software assurance and
software safety activities defined in this KNPR will ensure the quality, safety, and reliability of
KSC-developed software products.

P.2 APPLICABILITY

This KNPR applies to all KSC organizations and contractors performing operations at KSC or
KSC facilities, involved in the procurement, operation, maintenance, or servicing of flight
system, subsystems, or components, and in the acquisition, design, fabrication, or servicing of
related ground support equipment (GSE) and facilities systems to the extent specified in
applicable contracts. This includes KSC software development activities for all new projects
and major modifications to existing systems.

a. In the event of a conflict between the requirements set forth in this document and:

(1) Program or Agency requirements, the program or Agency Requirements shall take
precedence.

(2) Existing contract provisions, the contract provisions shall take precedence.

(3) Sub-tier documents, the provisions of this document shall take precedence.

(4) Other documents at an equivalent level (i.e., other KNPRs), the respective document’s
office(s) of primary responsibility (OPR) shall resolve the conflict on a case-by-case basis and
provide appropriate guidance.

b. If disagreement exists over which of the aforementioned documents takes precedence, the
Director of Safety and Mission Assurance shall make the final determination.

c. Requirements contained within this KNPR involving software apply to:

(1) All projects containing software to determine the software classification, safety criticality and
software assurance effort as defined in Software Assurance Classification Assessment (SACA)
in section 3.2 of this KNPR.

 (2) Once classified, the KNPR applies to Class A through Class D software, as defined in
NASA Procedural Requirements (NPR) 7150.2, NASA Software Engineering Requirements,
that is developed, acquired or maintained at KSC during the entire software lifecycle regardless
of the lifecycle model used for development. This includes the software tools and simulators
created for developing, verifying, or validating software/hardware systems used in safety-critical
missions, mission-critical projects, or critical facilities. Programmable Logic Controllers (PLC),
Field Programmable Gate Arrays (FPGA), and firmware are treated as software.

 (3) Open-Source, legacy, reused software products, Government-off-the-shelf (GOTS), and
commercial-off-the-shelf (COTS) used in Class A to Class D software systems.

 Page 4 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2

KNPR 8750.1
Rev. BASIC

P.3 AUTHORITY

NPD 2820.1, NASA Software Policy

P.4 APPLICABLE DOCUMENTS

a. NPR 1441.1, NASA Records Retention Schedules

b. NPR 7150.2, NASA Software Engineering Requirements

c. NPR 8735.2A, Management of Government Quality Assurance Functions for NASA
Contracts.

d. KNPR 8700.2, KSC Systems Safety and Reliability Analyses Methodology Procedural
Requirements

e. KNPR 8715.3, KSC Safety Practices Procedural Requirements

f. CxP 70038, Constellation Program Hazard Analyses Methodology

g. IEEE 730-2002, IEEE Standard for Software Quality Assurance Plans

h. NASA-STD-8719.13, Software Safety Standard

i. NASA-STD-8739.8, Software Assurance Standard

j. NASA-GB-8719.13, NASA Software Safety Guidebook

k. KDP-KSC-F-3629, Project Software Assurance Plan (SAP) Template

l. KDP-KSC-F-3630, Project Software Safety Plan (SSP) Template

m. KDP-KSC-F-3631, Software Assurance Classification Report Template

P.5 SUPERSESSION

None

P.6 VARIANCES

Variances from the requirements of this document will be in accordance with KNPR 8715.3,
KSC Safety Practices Procedural Requirements.

Approved By:

Shannon D. Bartell
Director, Safety and Mission Assurance

 Page 5 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPD&c=2820&s=1C
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=1441&s=1D
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8735&s=2A
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8735&s=2A
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/knpr_8700.2.pdf?doc=knpr_8700.2&rev=$latest
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/knpr_8700.2.pdf?doc=knpr_8700.2&rev=$latest
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/knpr_8715.3.pdf?doc=knpr_8715.3&rev=$latest
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/kdp-ksc-f-3629.pdf?doc=kdp-ksc-f-3629&rev=$latest
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/kdp-ksc-f-3630.pdf?doc=kdp-ksc-f-3630&rev=$latest
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/kdp-ksc-f-3631.pdf?doc=kdp-ksc-f-3631&rev=$latest
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/knpr_8715.3.pdf?doc=knpr_8715.3&rev=$latest
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/knpr_8715.3.pdf?doc=knpr_8715.3&rev=$latest

KNPR 8750.1
Rev. BASIC

CHAPTER 1: GENERAL

1.1 Overview

Software Assurance is a multidisciplinary function consisting of software quality (software quality
assurance, software quality control, and software quality engineering), software safety, software
reliability, software verification and validation (V&V), and software Independent Verification and
Validation (IV&V). The purpose of software assurance is to ensure that software products are of
high quality, operate safely, and contribute to mission success.

1.1.1 Definition of the Software Assurance Process

a. The software assurance process is the planned and systematic set of activities that ensure
conformance of software life cycle processes and products to requirements, standards, and
procedures.

b. Software assurance ensures that the software and related products:

(1) Meet their specified requirements.

(2) Conform to standards and regulations.

(3) Are consistent, complete, correct, safe, secure, and reliable as warranted for the system
and operating environment.

(4) Satisfy customer needs.

c. Software assurance ensures that all processes used to acquire, develop, test, operate, and
maintain the software:

(1) Are appropriate, sufficient, planned, reviewed, and implemented according to plan.

(2) Meet any required standards, regulations, and quality requirements.

1.1.2 Methodology

a. Software assurance utilizes relevant project-based measurement data to monitor each
product and process for possible improvements.

b. Software assurance is tied to and must be used in conjunction with NPR 7150.2, NASA
Software Engineering Requirements, which states that projects shall ensure the implementation
of NASA-STD-8739.8, NASA Software Assurance Standard and NASA-STD-8719.13, NASA
Software Safety Standard (reference requirements SWE-022 and SWE-023). This KNPR is
based on the Software Assurance Requirements of NASA-STD-8739.8 and NASA-STD-
8719.13.

1.1.3 Software Assurance Participants

a. Many groups may perform different aspects of software assurance. For example, systems
engineering might perform the software safety analyses, and software engineering might collect
and trend defects.

 Page 6 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf

KNPR 8750.1
Rev. BASIC

b. In accordance with the basic principles of software assurance and as indicated by the
requirements of this KNPR, an entity/organization independent from the organization creating
the software must either perform or assure that software assurance activities are performed
correctly and to the necessary level, and that records of those activities are created, analyzed,
and maintained.

c. Many software assurance activities may be tailored and performed within the project
structure, but a group independent from the project assures those activities and the results.

d. For KSC, this is the Safety and Mission Assurance (S&MA) organization.

e. For a contractor, this shall be a managerially separate organization called out as such in the
contract.

1.1.4 Acquirer and Provider Roles

a. Once the project has been evaluated for the appropriate software classification, the software
assurance tasks and level of effort can be assessed and documented within the project plan. In
addition, the Software Assurance function also serves as a resource for information, advice,
analysis, and independent reporting on quality, reliability, and safety of software products.

b. As defined by NASA-STD-8739.8, NASA Software Assurance Standard, there are two
primary roles in software assurance: the Acquirer and the Provider. NASA-STD-8739.8 defines
these terms as follows:

(1) The Acquirer

(a) The organization that specifies the software requirements and accepts the resulting
software products.

(b) At KSC, the Acquirer is NASA, and NASA S&MA is the organization that provides the
assurance, integration, and plan approvals for Acquirer Software Assurance to
program/projects/facilities. When the SACA indicates that a Software Assurance Manager is
required, the Acquirer shall identify the Software Assurance Manager who serves with the
authorities and responsibilities delineated in NASA-STD-8739.8. It is usually the most cost
efficient for NASA S&MA to serve as the Software Assurance Manager for the
programs/projects/facilities.

(2) The Provider

(a) The organization that designs, develops, implements, tests, operates, and maintains the
software products.

(b) At KSC, the Provider can be NASA or a contractor.

(c) If the provider is a contractor then the roles and responsibilities in section 1.2.2 apply to the
contractor.

(d) The Provider may be within the same organization as the Acquirer

(e) NASA S&MA or an S&MA contractor can perform Provider Software Assurance.

 Page 7 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf

KNPR 8750.1
Rev. BASIC

1.2 Roles and Responsibilities

1.2.1 Director, NASA-KSC Safety and Mission Assurance

a. Establish the KSC Software Assurance Program through the publication of this KNPR.

b. Ensure NASA S&MA resources are identified for implementing Software Assurance
requirements when it is determined that software assurance is required for
program/projects/facilities.

c. Ensure contracts or other agreements (e.g., Memorandum of Agreement/Understanding)
contain the appropriate software assurance and software safety requirements.

d. Ensure NASA S&MA review and approval of project S&MA products (e.g., plans, including
changes to S&MA products).

e. Ensure that all programs, projects, and facilities are periodically evaluated for the presence
of safety-critical software.

f. Collect and maintain a list of all safety-critical software at KSC. The list of safety-critical
systems with software is sent to NASA Office of Safety and Mission Assurance (OSMA) upon
request.

g. Ensure that the requirements of this KNPR are met for the complete lifecycle of projects from
project initiation through retirement.

h. Determine the project’s software assurance effort when software assurance is required for a
project for a program/project/facility.

1.2.2 Program / Project / Facility Management

a. Create the Software Assurance and Software Safety function and assign personnel
responsible for Software Assurance and Software Safety when required by a SACA.

b. Implement the Software Safety requirements in this document if the software is deemed
safety-critical per the Software Safety-Criticality Evaluation as defined in section 4.1 of this
KNPR.

c. Plan, fund, and execute the implementation of Software Assurance and Software Safety
within the project throughout the entire software life cycle.

d. Resolve conflicts related to Software Assurance requirements or processes with NASA
S&MA.

e. Ensure Software Assurance is represented in the software process and product approval
process.

1.3 General Requirements

a. The provisions of this KNPR shall be included in KSC contracts or other agreements such as
Memorandums of Agreement/Understanding or Technical Task agreements where deemed
necessary by the contracting or source selecting officials.

 Page 8 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

b. Projects shall implement the requirements in this KNPR throughout the entire lifecycle from
project initiation through retirement.

c. NASA S&MA shall ensure all the requirements in this document are satisfied for projects
throughout the entire lifecycle (i.e., from project initiation through retirement).

d. The Software Assurance and Software Safety requirements in this KNPR shall be flowed-
down to respective contractors, sub-contractors, and suppliers.

e. NASA S&MA shall review and approve project S&MA products as defined in the Software
Assurance Plan.

 Page 9 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

CHAPTER 2: NASA S&MA REQUIREMENTS

At KSC, NASA S&MA is the organization that provides Software Assurance support to
projects/programs/facilities. The requirements in this section define the requirements for NASA
S&MA to perform “Acquirer Software Assurance” for projects.

2.1 Software Assurance Management and Planning

The first step once a project, program, or facility is conceived and initially approved is to perform
an evaluation of the intended software portion of the system(s). This is an initial classification
and ranking of the software and needs to be updated as the contract, design, and delivery of the
software progresses. The results of the evaluation/assessment of the potential software for a
project are coordinated and approved by NASA S&MA, recorded, and maintained.

a. When it is determined by the SACA that software assurance is required on a project, a NASA
S&MA Software Assurance Plan shall be developed, executed, and maintained.

b. The Software Assurance Plan shall be reviewed and updated as necessary when project
changes occur (e.g., the SACA is updated).

c. The NASA S&MA Software Assurance Plan shall be consistent, compatible, and baselined
with the project Software Assurance Plan.

2.2 Reviews, Audits, and Assessments

a. Reviews, audits, and surveillance tasks shall be performed from acquisition through
retirement.

(1) Periodic surveillance tasks of the project software assurance processes and procedures to
ensure the requirements of this KNPR are met shall be performed.

NOTE: Reference NPR 8735.2, Management of Government Quality Assurance Functions for
NASA Contracts.

(2) Periodic operational assessments shall be performed at a minimum of 24 months to ensure
baseline management of software requirements, design, code, and documentation.

2.3 Software Acceptance/Operation/Maintenance/Retirement

During the transition from a development phase to an operations and maintenance phase, it is
important to ensure that software assurance practices remain in place and are used.

a. Appropriate lessons learned shall be recorded and entered into the NASA Lessons Learned
Database.

b. Software assurance processes shall be in place for operation and maintenance of the
software developed or acquired by NASA.

NOTE: A separate Software Assurance Plan may be necessary if a new contract covers the
operational phase.

 Page 10 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8735&s=2A

KNPR 8750.1
Rev. BASIC

CHAPTER 3: SOFTWARE ASSURANCE REQUIREMENTS FOR PROGRAMS/PROJECTS/
FACILITIES

At KSC, Programs/Projects/Facilities design, develop, implement, test, operate, and maintain
software products. The software assurance requirements in this section are those relative to
the software engineering activities that occur on projects with software. The requirements in
this section define the requirements for Program/Projects/Facilities to perform “Provider
Software Assurance” for projects.

NOTE: NASA-KSC S&MA or an S&MA contractor can be responsible for the Project Software
Assurance function when the Provider (see definition) organization is NASA.

3.1 Planning

a. An initial SACA of the software shall be performed, recorded, and maintained (see section 3.2
of this KNPR) for each project containing software during the concept/formulation phase,

NOTE: An initial classification and ranking of the software is performed to determine the safety
criticality, classification of the software, and the prioritization and level of software assurance
effort.

b. All the requirements in Chapter 2, 3, and 4 of this document shall be implemented when
software is classified as “A” or “B”.

c. It shall be permissible for class “C” and “D” software to tailor the software assurance
requirements commensurate with the planned software engineering requirements and activities
of NPR 7150.2.

NOTE 1: Often Class D assurance activities consist mostly of assuring any contractual
agreements meet the needs of the project/program and then performing periodic audits and
surveys of the project’s work to follow up. The level of software assurance effort applied to any
class is commensurate with the risk, criticality, complexity, and needed reliability and quality of a
project.

NOTE 2: If the results of the SACA identify the software as Class E (which includes Exploratory
software), then the requirements of this Standard are not mandatory.

NOTE 3: Class F-H software is currently the responsibility of the Chief Information Office.
However, for the higher level Information Technology or business class systems, if software
assurance is requested, software assurance would be performed on those projects in
conjunction with the software engineering requirements in NPR 7150.2.

d. Tailoring of software assurance requirements shall be documented in the Software
Assurance Plan and approved by NASA-KSC S&MA.

e. KDP-KSC-F-3631, Software Assurance Classification Report Template shall be used to
record the SACA results.

f. The SACA report shall be approved by NASA S&MA prior to the initial requirements
development.

g. The SACA shall be updated prior to each project milestone review and/or when there is a
major change in project requirements.

 Page 11 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2

KNPR 8750.1
Rev. BASIC

h. A Software Assurance program shall be planned, documented, and implemented for
software development, operation, maintenance, and retirement activities, including
documentation of software assurance procedures, processes, tools, techniques, and methods to
be used.

i. All the elements in the Software Assurance Plan (SAP) template in KDP-KSC-F-3629,
Software Assurance Plan Template shall be addressed in the Project Software Assurance Plan.

NOTE: While all the elements detailed in the SAP template (KDP-KSC-F-3629) must be
addressed by the overall Project Software Assurance Plan, the project may decide to address
these elements in a product other than a Software Assurance Plan, such as the Software
Development Plan.

j. The Software Assurance plan shall conform to IEEE 730-2002, IEEE Standard for Software
Quality Assurance Plans.

k. Processes for assurance of Commercial Off-the Shelf (COTS), Modified Off-the-Shelf
(MOTS), and Government Off-the-Shelf (GOTS) software and any modifications or applications
written to adapt them into the intended system shall be develop and maintained.

l. Software assurance activities shall be documented in all appropriate project plans.

m. Software quality metrics (e.g., defect metrics) shall be developed.

n. The Software Assurance effort shall be tailored based on the results of the SACA and the
planned software engineering activities for the project.

3.2 Software Assurance Classification Assessment Process (SACA)

The Software Assurance Classification Assessment was developed by NASA to identify and
evaluate the characteristics of software to determine the software's classification and the level
of software assurance to be applied. This assessment is conducted by projects for all NASA
software. The classification requires NASA S&MA approval.

a. Projects shall determine the class of software in accordance with the software classifications
definitions for Class A-H based on NPR 7150.2, NASA Software Engineering Requirements.

NOTE: If the software is classified as Class E (which includes Exploratory) through H, based on
its intended use of the software, its projected customer base, and potential for release or
software infusion, then no further software assurance determination is needed.

b. Projects shall perform the Software Safety-Criticality Evaluation in accordance with the
requirements of section 4.1 of this KNPR, and document the results in the SACA Report (see
KDP-KSC-F-3631, Software Assurance Classification Assessment Report Template).

c. Projects shall classify the software and software assurance effort based on the results from
the preceding steps in as detailed in Appendix C of this KNPR.

NOTE: An overall rating for the project software as well as any specific classes for separate
software tasks within a project is helpful in determining software assurance resources are
appropriately applied.

 Page 12 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2

KNPR 8750.1
Rev. BASIC

d. Results from all steps shall be documented in a Software Assurance Classification
Assessment Report and maintained as a quality record.

NOTE: A template for a Software Assurance Classification Report is provided in KDP-KSC-F-
3631, Software Assurance Classification Assessment Report Template.

3.3 Records

a. Software assurance records shall be developed, placed under configuration management,
and maintained.

b. Software assurance records shall contain, at a minimum:

(1) The descriptions and results of software assurance activities (e.g., audit reports,
classification evaluations, milestone review, and problem reporting tracking).

(2) Recommended preventive action, corrective actions, and lessons learned.

3.4 Reporting

a. Software assurance status reports shall be documented and provided to project
management and NASA S&MA.

NOTE: Frequency of status reports can be determined by project management and NASA
S&MA.

b. Software assurance status reports shall include at a minimum:

(1) Highlights of key organization and personnel changes.

(2) Assurance accomplishments and resulting software assurance program metrics for activities
such as inspection and test, reviews, contractor/subcontractor surveys, audits.

(3) Subcontractor assurance accomplishments, including items listed above, plus summaries of
acceptance and certification reports.

(4) Significant problems, their status, solutions, and remedial and preventive actions.

(5) Trends in software quality metric data (e.g., defect types, location, priority/criticality).

(6) Plans for upcoming software assurance activities.

(7) Recommendations and lessons learned.

3.5 Reviews/Audits/Assessment

a. Reviews/audits/assessments on lower level testing results and software development folders
shall be performed.

b. Reviews/audits/assessments on the software engineering practices, development
environment, test environment, and libraries shall be performed.

 Page 13 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

c. Software quality issues in formal reviews and inspections shall be documented and
monitored.

d. Management, engineering, and assurance products and processes against applicable
project plans shall be audited.

e. Reviews/audits on software assurance and software-safety processes shall be performed.

f. Software Assurance and software safety process nonconformances shall be documented and
reported to software assurance, software safety, system safety personnel, and project
management.

3.6 Discipline-Specific Requirements

3.6.1 Software Quality

a. The Project's Software Assurance Program shall identify all product and process assurance
activities to be performed.

b. The Project's Software Assurance Program shall identify the Problem Reporting and
Corrective Action (PRACA) system(s) and PRACA processes to be used by the project.

c. Computing system defects, including hardware and software, shall be reported using the
project's PRACA system.

d. Product deliverables (e.g., licenses, simulators, models, and test suites) shall be transferred
from the project/developer to NASA or the designated maintenance contractor.

3.6.1.1 Product Assurance

a. Formal and acceptance software testing shall be witnessed or reviewed/audited.

b. To ensure the quality and safety of the software products being delivered, software quality
metrics shall be developed and analyzed for each lifecycle phase.

c. Negative trends shall be considered for risk identification and mitigation.

d. Metric reports shall be developed and delivered as defined in the Software Assurance Plan.

e. Software certification/acceptance criteria and objective evidence shall be provided prior to
delivery.

f. Software shall be verified (e.g., tested, analyzed, measured) for compliance with functional
and performance requirements.

3.6.1.2 Process Assurance

a. The project software quality metrics process shall be audited for compliance to appropriate
documentation or requirements.

b. The PRACA process shall be used to document and track to resolution problems with
software processes including process escapes.

 Page 14 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

3.6.2 Software Safety

a. During the concept or formulation phase of the project, a safety-critical software
determination on all software (regardless of source) shall be performed.

NOTE: This is a preliminary assessment, conducted as part of a preliminary hazard analysis,
that the project will refine as more detail becomes available throughout the life cycle.

b. The Software Safety-Criticality Evaluation shall be used as described in section 4.1 of this
document to determine if software is considered “safety-critical.”

c. The results of the Software Safety-Criticality Evaluation shall be provided prior to the project
Conceptual Design Review milestone or equivalent milestone (e.g. 30% review).

d. Projects with safety-critical software shall implement the software safety and software
assurance requirements and activities in this document.

e. Software associated with only hazards with a level 3 consequence/severity effects can be
considered “non-safety-critical” with approval from the KSC Ground Risk Review Panel (GRRP).

(1) A plan with supporting rationale shall be submitted for review/approval by the GRRP.

(2) The plan shall gain approval by the GRRP prior to implementation.

3.6.3 Software Reliability

a. Software reliability analyses and measurements (including trends and metric data) shall be
performed when determined by the project and NASA S&MA.

b. A Software Reliability Plan shall be developed, executed, and maintained.

c. The Software Reliability Plan shall address the following:

(1) Reliability analysis and predictions.

(2) Failure modes, effects, and criticality analysis.

(3) Failure reporting and corrective action.

(4) Monitoring/control of contractors and subcontractors.

(5) Reliability development, testing, and qualification.

(6) Reliability performance level maintenance.

(7) Reliability provisions for redundancy.

d. The software requirements for fault tolerance and redundancy shall be documented,
implemented, and verified through testing.

e. Software reliability analyses and measurements shall be performed and maintained during
the life of the system.

 Page 15 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

f. Defects found during formal and informal reviews/audits/inspections shall be collected and
tracked through closure.

g. The use of software quality metrics during each stage of development and across
development and operational phases shall be documented, analyzed, and tracked.

NOTE: Examples include fault counts by severity levels, time between discovery and removal
of faults, and number of faults found in a time period per lines of code or number of function
points.

h. Trend analyses on the software quality metrics shall be performed and made available for
lessons learned or root cause analyses.

i. A Software Reliability Assessment shall be performed and maintained during the life of the
system.

j. The Software Reliability Assessment shall address the following:

(1) Specification, implementation, and verification of fault tolerance and redundancy.

(2) Evaluation of software reliability analyses and measurements, including metrics and trends.

(3) Collection and classification of software defects.

(4) Fault counts by severity level and time between discovery and removal of fault.

(5) Root cause analysis, trend analysis, and collection and documentation of lessons learned.

3.6.4 Software Verification and Validation

Verification and validation activities, including the use of existing program or Center-approved
processes, shall be documented and executed according to established plans, policies,
procedures, and standards.

3.6.5 Software IV&V

a. Selection of software projects for IV&V support shall be based on the results of the SACA,
with priority given to those software projects identified as safety-critical or as software Class A.

b. Requests for exemption shall be made from a Center IV&V liaison to OSMA.

c. After being chosen for IV&V, exemption shall require an assessment of the software project
by the NASA OSMA and approval by the Chief Safety and Mission Assurance Officer.

NOTE: Software projects that are neither Class A nor safety-critical but still request OSMA
coverage of IV&V on their projects will be considered only by special request from either the
NASA OSMA, the IV&V Board of Directors, or by the IV&V Center Liaisons. Software intense
projects not selected as candidates for IV&V by NASA OSMA may negotiate with the IV&V
Facility to specify and fund IV&V for their projects directly.

d. All computer system products and data identified in the project’s IV&V Plan or other IV&V
agreements shall be provided to the NASA IV&V Facility personnel.

 Page 16 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

CHAPTER 4: SOFTWARE SAFETY REQUIREMENTS FOR PROGRAMS/PROJECTS/
FACILITIES

Software Safety activities will focus efforts to eliminate or mitigate risks to a level acceptable to
NASA S&MA and the program/projects/facilities management. These activities will include
working with System Safety to analyze both the software and hardware contributions to a
hazard and, from a systems perspective, design out hazards, or reduce the likelihood of
occurrence of those hazards.

4.1 Software Safety Criticality Evaluation

The requirements in Chapter 4 of this KNPR are applicable to all projects with software
classified as “safety-critical” per the following criteria:

NOTE: KSC defines “Safety-Critical” as anything (e.g., system, subsystem, equipment,
component, operation, event, process, function, etc.) that could result in a consequence severity
level 4 or 5 hazard in a 5X5 matrix (e.g., marginal/critical/catastrophic per CxP 70038 or
moderate/high/very high per KNPR 8715.3).

a. When a system is determined to be safety-critical [as determined by a Preliminary Hazard
Analysis per KNPR 8700.2], the software shall be evaluated for its contribution to the safety of
the system.

b. Software shall be classified as safety-critical if it meets any of the following criteria:

(1) Resides in a safety-critical system (per KNPR 8700.2) AND at least one of the following
apply:

(a) Causes or contributes to a hazard with a Level 3, 4, or 5 consequence/severity effect.

(b) Provides control or mitigation for hazards with a Level 3, 4, or 5 consequence/severity
effect.

(c) Controls safety-critical functions associated with hazards with a Level 3, 4, or 5
consequence/severity effect.

(d) Processes safety-critical commands or data.

NOTE: If data is used to make safety decisions (either by a human or the system), then the
data is safety-critical, as is all the software that acquires, processes, and transmits the data.
However, data that may provide safety information but is not required for safety or hazard
control (such as engineering telemetry) is not safety-critical.

(e) Detects and reports or takes corrective action if the system reaches a specific hazardous
state that could lead to a Level 3, 4, or 5 consequence/severity effect.

(f) Mitigates damage if a hazard with a Level 3, 4, or 5 consequence/severity effect occurs.

(g) Resides on the same system (processor) as safety-critical software responsible for
controlling hazards with a Level 3, 4, or 5 consequence/severity effect.

 Page 17 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/knpr_8715.3.pdf?doc=knpr_8715.3&rev=$latest
https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/knpr_8700.2.pdf?doc=knpr_8700.2&rev=$latest

KNPR 8750.1
Rev. BASIC

NOTE: Non-safety-critical software residing with safety-critical software is a concern because it
may fail in such a way as to disable or impair the functioning of the safety-critical software.
Methods to separate the code, such as partitioning, can be used to limit the software defined as
safety-critical. If such methods are used, then the isolation method is safety-critical, but the
isolated non-critical code is not.

(2) Processes data or analyzes trends that lead directly to safety decisions associated with
controlling hazards with a Level 3, 4, or 5 consequence/severity effect occurs (e.g., determining
when to turn power off energized ground support equipment to prevent system destruction).

(3). Provides full or partial verification or validation of safety-critical systems, including hardware
or software subsystems.

b. Until proven otherwise, and based on the above criteria, software within a safety-critical
system shall be considered safety-critical.

4.2 Software Safety Plan

The Software Safety Plan outlines the project/program/facility software safety process, including
organizational structure, interfaces, and the required criteria for analysis, reporting, evaluation,
and data retention to provide a safe product. This safety plan describes forms of analysis and
provides a schedule for performing a series of these system and subsystem level analyses
throughout the development cycle. It also addresses how the results of software safety
analyses and the sign-off and approval process should be handled. This plan provides the
foundation for all future software safety activities.

a. A Software Safety Plan shall be developed, executed, and maintained to address all
software-safety activities for each project and software development lifecycle phase.

NOTE: The Software Safety Program will be coordinated with other project organizations (e.g.,
system safety, software engineering, and software assurance).

b. All the elements in the Software Safety Plan template in KDP-KSC-F-3630, Project Software
Safety Plan Template shall be address in the Project Software Safety Plan.

NOTE: While all the elements detailed in KDP-KSC-F-3630 must be addressed by the overall
Project Software Safety Plan, the project may decide to address these elements in a product
other than a Software Safety Plan, such as the Software Assurance or Project Plan.

c. A process or mechanism to document, trace, communicate, and close software safety
concerns that result from safety analyses or design reviews shall be developed and
implemented.

4.3 Documentation

Software safety activities shall be documented in all appropriate project plans.

4.4 Traceability

A bidirectional mapping between software safety requirements and system hazards shall be
developed and maintained which traces down to software design, implementation (i.e., safety-
critical code), and test plans and procedures and other verifications methods.

 Page 18 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

4.5 Discrepancy and Problem Reporting and Tracking

a. A closed-loop tracking system shall be documented and used to track discrepancies,
problems, and failures in baselined safety-critical software products and processes.

b. Software changes, including software changes resulting from problem or discrepancy
resolution, shall be evaluated for potential safety impact, e.g. the creation of new hazard
contributions and impacts, modification of existing hazard controls or mitigations, or detrimental
effects on safety-critical software or hardware.

4.6 Software Configuration Management

Safety-critical software and associated documentation, simulators, models, test suites, data, etc.
shall be maintained in a configuration management system per the project’s configuration
management plan.

4.7 Software Hazard Analysis

a. Software safety hazard analyses shall be performed in accordance with KNPR 8700.2, KSC
Systems Safety and Reliability Analyses Methodology Procedural Requirements.

b. Software safety hazard analyses shall be integrated into the overall system safety analysis.

c. System and software hazard analyses shall be used to create new, or identify, existing,
software requirements necessary to mitigate or control any hazards where software is a
potential cause or contributor to a hazard.

d. System hazard analyses shall be reviewed for changes that impact the software subsystem.

e. The risk approval process defined in KNPR 8700.2, KSC Systems Safety and Reliability
Analyses Methodology Procedural Requirements, shall be used when software is identified as a
contribution to a hazard.

4.8 Software Safety Analysis

The software safety analyses and specific analysis activities to be performed for each lifecycle
phase shall be documented.

4.8.1 General

a. The following software safety analysis shall be performed:

(1) Requirements Analysis

(2) Design Analysis

(3) Implementation Analysis

(4) Test Analysis

NOTE: Guidance for performing the various software safety analyses is defined in NASA-GB-
8719.13, NASA Software Safety Guidebook.

 Page 19 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf

KNPR 8750.1
Rev. BASIC

b. Software safety analysis results and artifacts shall be delivered at the project’s major
milestone reviews in accordance with KNPR 8700.2, KSC Systems Safety and Reliability
Analyses Methodology Procedural Requirements.

c. Information concerning the allocation of safety requirements between hardware and
software, the number and depth of required Software Safety Analyses, the methodology to
implement safety features, and the classification of each software components shall be provided
prior to the project Conceptual Design Review or equivalent milestone (e.g. 30% review).

d. Updates to the allocation of safety requirements between hardware and software shall be
provided at project milestone reviews, including Preliminary Design Review, Critical Design
Review, and System Acceptance Review.

e. Functional analysis shall be performed for safety-critical COTS, GOTS and Modified Off-The-
Shelf (MOTS) software.

NOTE: Minimum activities include reviewing/analyzing the user manual, acceptance test
procedure/result, procurement requirements of software, statement of work, etc. Review
proposed modifications to COTS/GOTS hardware or software.

4.8.2 Software Safety for Requirements

Software Safety Requirements Analysis shall ensure, at a minimum:

a. Software safety requirements are uniquely identified in the system requirements specification
and the software requirements specifications.

b. Software safety requirements are reviewed for ambiguities, inconsistencies, omissions, and
undefined conditions.

c. Software safety requirements are traceable to applicable safety-related system requirements.

d. The software safety requirements that provide control or mitigation to potential failures are
identified.

NOTE: Potential failures to consider include but are not limited to: limit ranges, relationship
logic for interdependent limits, out-of-sequence event protection, timing problems, sensor or
actuator failures, voting logic, hazardous command processing requirements, Fault Detection,
Isolation, and Recovery (FDIR), switchover logic for failure tolerance, and the ability to reach
and maintain a safe state if so required.

e. Software safety requirements include positive measures to prevent potential problems and
implement required “must work” functions.

f. Computer-based controls for hazards meet the control system safety requirements
designated within the system requirements.

4.8.3 Software Safety for Design

The Software Safety Design Analysis shall ensure, at a minimum:

a. The software design identifies safety design features.

 Page 20 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

b. The safety requirements and features in the software design are testable.

c. Design documentation clearly identifies all safety-critical design elements.

d. Safety-critical design elements are traceable to software safety requirements.

e. Software design does not compromise any safety or hazard controls.

f. Design does not introduce new hazards.

g. COTS, MOTS, legacy, reused software and tools in the development/verification of safety-
critical software does not have an adverse effect on the design.

h. All hazardous commands are identified, including internal and external automated
commands and user commands.

i. The project’s approach to software safety design is documented in the Software Design
Document.

4.8.4 Software Safety for Implementation

a. The Software Safety Implementation Analysis shall ensure, at a minimum:

(1) The design safety features and methods are implemented in the software code.

(2) The software implementation conforms to the design documentation.

NOTE: This involves tracing the requirements to the design and to the code and can be
performed as a manual code review or with code analysis tools; it verifies conformance to
coding standards and software safety design features.

(3) The software code does not compromise any safety controls or create any additional
hazards.

(4) Safety-critical code units are traceable to safety-critical design elements.

b. Software-specific functions or features that should not be used shall be documented.

c. Software-specific features that require controlled or limited use shall be documented.

d. Source code comments shall clearly identify safety-critical code and data.

4.8.5 Software Safety for Testing

a. Software safety requirement shall be mapped to a verification method of testing.

b. Test plans and procedures shall be reviewed and approved prior to conducting the tests.

c. Test results involving safety-critical software shall be documented.

d. Formal software safety tests shall be witnessed/monitored.

e. Test analysis shall confirm compliance with safety requirements and ensure the safe
operation of the system.

 Page 21 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

f. Testing shall address the software failure modes identified in safety analyses.

g. Test results shall include safety concerns and discrepancies.

h. New system configurations shall be tested.

i. The amount and type of regression testing required for software safety requirements shall be
documented.

j. Testing of nominal and off-nominal inputs and conditions shall be performed.

k. V&V testing shall be performed using only certified models, simulators, and tools.

4.8.6 Software Safety for Certification

a. The activities and processes to be used for system certification shall be documented.

b. The certification plan shall contain at a minimum:

(1) Software Safety activities required prior to certification.

(2) Safety-critical software certified prior to release for operation use.

NOTE: This includes tools, COTS, MOTS, legacy, and reused software.

c. The Certification Data Package shall include:

(1) Identification of all software related hazards per KNPR 8700.2, KSC Systems Safety and
Reliability Analyses Methodology Procedural Requirements.

(2) Identification of all hazard controls that are implemented with software.

(3) Identification and tracking of all software safety requirements.

(4) V&V results and approved variances for all software safety requirements.

(5) Verification that all safety discrepancy dispositions and operational work-arounds have been
documented and provided to the operational user.

4.8.7 Operational Use of Safety-Critical Software

a. The software safety processes used in the development of the software shall apply to
changes made to the software or routine operational updates.

b. Any changes to safety-critical software and its release to operations shall be regression
tested, tracked, and controlled.

c. Operational documentation shall include safety-related commands, data, input/output
sequences, expected user responses, corrective actions, and error message descriptions.

d. A retirement plan that addressed the safe termination of operations for safety-critical
system/facility shall be developed, executed, and maintained.

 Page 22 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

 APPENDIX A: DEFINITIONS

Acquirer: The entity or individual who specifies the requirements and accepts the resulting
software products. At KSC, the Acquirer is NASA, and NASA S&MA is the organization that
provides Acquirer Software Assurance support to program/projects/facilities.

Assessment: An objective evaluation of performed processes or products and services against
their applicable process descriptions, standards, procedures, and requirements.

Audit: An examination of a work product or set of work products performed by a group
independent from the developers to assess compliance with specifications, standards,
contractual agreements, or other criteria. (Based on IEEE 610.12, IEEE Standard Glossary of
Software Engineering Terminology)

Baseline: A specification or product that has been reviewed formally and agreed upon, that
thereafter serves as the basis for further development, and that can be changed only through
formal change control procedures.

Certification: The process of formally verifying that a system, software subsystem, or
computer program is capable of satisfying its specified requirements in an operational
environment for a defined period of time. This includes any requirements for safing the system
upon the occurrence of failures with potential safety impacts.

Commercial Off the Shelf (COTS): Commercial items that require no unique Government
modification or maintenance over the life cycle of the product to meet the needs of the procuring
agency. A commercial item is one customarily used for non-Governmental purposes that has
been or will be sold, leased, or licensed (or offered for sale, lease, or license) in quantity to the
general public. An item that includes modifications customarily available in the commercial
marketplace or minor modifications made to meet NASA requirements is still a commercial item.

Component: A constituent element of a system or subsystem.

Consequence: An assessment of the worst case credible potential effect(s) of a risk without
any controls in place that is documented in terms of a consequence/severity level using the
applicable risk matrix.

Customer: The NASA program, project, facility, or other entity that acquires software
developed by another organization.

Eliminated Hazard: A hazard that has been eliminated by completely removing the hazard
causal factors.

Failure: Nonperformance or incorrect performance of an intended function of a product. A
failure is often the manifestation of one or more faults.

Firmware: The combination of a hardware device and computer instructions and/or computer
data that reside as read-only software on the hardware device.

 Page 23 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

Fault: An inherent defect in a product which may or may not ever manifest, such as a bug in
software code.

Hazard: A condition that has the potential to result in or contribute to injury, death, or equipment
damage.

Hazard Analysis (HA): Identification and evaluation of existing and potential hazards and the
recommended mitigation for the hazard sources found.

Hazard Report (HR): The output of a Hazard Analysis for a specific hazard which documents
the hazard title, description causes, control, verification, and status.

Hazard Control: Means of reducing the risk of exposure to a hazard. This includes design or
operational features used to reduce the likelihood of occurrence of a hazardous effect or the
severity of the hazard.

Independent Verification and Validation (IV&V): Verification and validation performed by an
organization that is technically, managerially, and financially independent. IV&V, as a part of
software assurance, plays a role in the overall NASA software risk mitigation strategy applied
throughout the life cycle, to improve the safety and quality of software.

Likelihood of Occurrence: An assessment of the likelihood or probability of a hazard's most
severe effects transpiring. Likelihood takes into account that the hazard controls are in place
and effective.

Memorandum Of Agreement (MOA): A written agreement between two or more parties that
defines the roles and responsibilities of each party with respect to the collaborative efforts of a
particular program/project. A MOA is sometimes called a Memorandum of Understanding
(MOU).

Mission-Critical: Item or function that must retain its operational capability to ensure no
mission failure (i.e., for mission success).

Off-the-Shelf Software: Ready-made software used “as-is” within a system.

• Commercial Off-the-shelf (COTS) software refers to purchased software such as
operating systems, libraries, or applications.

• MOTS (modified off-the-shelf) software is typically a COTS product whose source code
can be modified.

• GOTS (government off-the-shelf) software is typically developed by the technical staff of
the government agency for which it is created.

Partitioning: Separation, physically and/or logically, of safety-critical functions from other
functionality.

Physical Configuration Audit (PCA): An audit conducted to verify that one or more
configuration items, as built, conform to the technical documentation that defines it. [Based on
IEEE 610.12, IEEE Standard Glossary of Software Engineering Terminology]

 Page 24 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

Preliminary Hazard Analysis (PHA): A preliminary identification and evaluation of existing
and potential hazards of a system and the recommended mitigation for the hazard sources
found. The PHA is performed during the conceptual design phase.

Process: A set of interrelated activities, which transform inputs into outputs.
[ISO/IEC 12207, Software life cycle processes]

Process Assurance: Activities to ensure that all processes involved with the project adhere to
plans and comply with the contract and/or any memorandum of agreement/understanding.

Product Assurance: Activities to ensure that all required plans are documented, and that the
plans, software products, and related documentation adhere to plans and comply with the
contract and/or any memorandum of agreement/understanding.

Project Life Cycle: Steady progression of a project from its beginning to its completion and
decommissioning. A set of steps or phases through which a project advances. This includes
formulation/conception through sign-off and delivery to the customer and may include
operations, maintenance and retirement depending on how the project is defined. The
operations and maintenance phases through retirement may be a separate project life cycle and
as such still needs to address the requirements in this standard.

Provider: The entities or individuals that design, develop, implement, test, operate, and
maintain the software products. The term “provider” is equivalent to “supplier” in ISO/IEC 12207,
Software life cycle processes. At KSC, the Provider can be NASA or a contractor

Regression Testing: The selective retesting of a system that has been modified to ensure that
any defects have been fixed and that no other previously working functions have failed or
ceased to work as expected as a result of the changes.

Reused Software: Software created for another system that is incorporated into the system
under development.

Review: A process or meeting during which a software product or related documentation is
presented to project personnel, customers, managers, software assurance personnel, users or
user representatives, or other interested parties for comment or approval. [IEEE 610.12, IEEE
Standard Glossary of Software Engineering Terminology] Reviews include, but are not limited
to, requirements review, design review, code review, and test readiness review. Other types
may include peer review and formal review.

Residual Risk: Risk that remains from a hazard after all mitigation has been applied.

Risk: The combination of the likelihood (qualitative or quantitative) that an activity will
experience an undesirable event and the consequence/severity of the undesired event were it to
occur.

Risk Assessment: The process of qualitative risk categorization or quantitative risk elimination,
followed by evaluation of risk significance.

Safety and Mission Assurance (SMA): SMA refers to the safety and mission assurance
organization (i.e., the offices and people at all NASA Field Installations and Headquarters who

 Page 25 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

support customers with policy, process, and standards development; oversight and insight; and
technology development and transfer, in the disciplines of safety, reliability, maintainability, and
quality).

Software: Computer programs, procedures, rules, and associated documentation and data
pertaining to the development and operation of a computer system. Software includes
programs and operational data contained in hardware (e.g., firmware, programmable logic, and
programmable gate arrays). This also includes COTS, GOTS, MOTS, reuse, legacy, and
heritage software products and components.

Software Acquisition: The process of obtaining software from another organization via a
documented agreement; a set of activities that are used to acquire software products from
another organization.

Software Assurance: The planned and systematic set of activities that ensure that software
life cycle processes and products conform to requirements, standards, and procedures. [IEEE
610.12, IEEE Standard Glossary of Software Engineering Terminology] For NASA this includes
the disciplines of Software Quality (functions of Software Quality Engineering, Software Quality
Assurance, Software Quality Control), Software Safety, Software Reliability, Software
Verification and Validation, and IV&V.

Software Assurance Program Metrics: Metrics related to the activities defined in the
Software Assurance Program. Examples include number of reviews/audits planned vs.
reviews/audits performed, software assurance effort planned vs. software assurance effort
actual, and corrective actions opened vs. corrective actions closed.

Software Assurance Record: Metrics related to the activities defined in the Software
Assurance Program. Examples include number of reviews/audits planned vs. reviews/audits
performed, software assurance effort planned vs. software assurance effort actual, and
corrective actions opened vs. corrective actions closed.

Software Hazard: A hazard caused by incorrect software control of hazardous hardware. The
software might be functioning correctly (according to its requirements) or in a failure mode.

Software Life Cycle: The period of time that begins when a software product is conceived and
ends when the software is no longer available for use. The software life cycle typically includes
a concept phase, requirements phase, design phase, implementation phase, test phase,
installation and checkout phase, operation and maintenance phase, and sometimes, retirement
phase. [IEEE 610.12] The software development life cycle is a subset of this larger life cycle.

Software Quality: The discipline of software quality is a planned and systematic set of
activities to ensure quality is built into the software. It consists of software quality assurance,
software quality control, and software quality engineering. As an attribute, software quality is (1)
the degree to which a system, component, or process meets specified requirements; or (2) the
degree to which a system, component, or process meets customer or user needs or
expectations. [IEEE 610.12,IEEE Standard Glossary of Software Engineering Terminology]

Software Quality Assurance: The function of software quality that ensures that the standards,
processes, and procedures are appropriate for the project and are correctly implemented.

 Page 26 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

Software Quality Control: The function of software quality that checks that the project follows
its standards, processes, and procedures, and that the project produces the required internal
and external (deliverable) products.

Software Quality Engineering: The function of software quality that ensures that quality is
built into the software by performing analyses, trade studies, and investigations on the
requirements, design, code, and verification processes and results to ensure that reliability,
maintainability, and other quality factors are met.

Software Quality Metrics: Metrics are quantitative values that measure the quality of software
or the processes used to develop the software, or some attribute of the software related to the
quality (e.g., defect density).

Software Reliability: The discipline of software assurance that (1) defines the requirements for
software controlled system fault/failure detection, isolation, and recovery; (2) reviews the
software development processes and products for software error prevention and/or reduced
functionality states; and (3) defines the process for measuring and analyzing defects and
defines/derives the reliability and maintainability factors.

Software Safety: The aspects of software engineering and software assurance that provide a
systematic approach to identifying, analyzing, and tracking software mitigation and control of
hazards and hazardous functions (e.g., data and commands) to ensure safer software operation
within a system.

Software Safety Analysis: The application of system safety engineering techniques
throughout the software life cycle to ensure that errors that could reduce system safety have
been eliminated or controlled to an acceptable level of risk.

Software Safety Plan: A document that details the activities, general relative schedule of
needed activities, communication paths and responsibilities for performing software safety
activities as part of the systems safety program. This does not have to be a standalone
document, but could be included as part of the systems safety plan or, for small projects, an
overall assurance plan. While it may be written by either the project/program/facility or by the
safety personnel within the Center SMA organization(s), both must sign off on it.

Surveillance: The continuous monitoring and status of an entity and analysis of records to
ensure that specified requirements are being met. Note: Surveillance can be performed in an
insight, oversight, or a combined mode as determined by NASA using a risk-based decision
process. [NPR 8735.2, Management of Government Safety and Mission Assurance
Surveillance Functions for NASA Contractors]

System Hazard Analysis: Identification and evaluation of existing and potential hazards and
the recommended mitigation for the hazard sources found. [NPR 8715.3] This includes the
verification and validation of the safety functions and hazard controls.

System Safety: Application of engineering and management principles, criteria, and
techniques to optimize risks within the constraints of operational effectiveness, time, and cost
throughout all phases of the system/software life cycle.

 Page 27 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8735&s=2A
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8735&s=2A
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8715&s=3C

KNPR 8750.1
Rev. BASIC

Validation: Confirmation by examination and provision of objective evidence that the particular
requirements for a specific intended use are fulfilled. [ISO/IEC 12207, Software life cycle
processes] In other words, validation ensures that “you built the right thing.”

Variance: Documented and approved permission to perform some act or operation that is
contrary to established requirements.

Verification: Confirmation by examination and provision of objective evidence that specified
requirements have been fulfilled. [ISO/IEC 12207, Software life cycle processes] In other words,
verification ensures that “you built it right.”

Waiver: A documented variance that authorizes departure from a particular safety requirement
where alternate methods are employed to mitigate risk or where an increased level of risk has
been accepted by management. Waivers are only employed for variances identified after
beginning development or after an item has been submitted for inspection.

 Page 28 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

APPENDIX B: ABBREVIATIONS AND ACRONYMS

COTS Commercial Off-the-Shelf

FDIR Fault Detection, Isolation, and Recovery

FPGA Field Programmable Gate Arrays

GOTS Government Off-the-Shelf

GSE Ground Support Equipment

IV&V Independent Verification and Validation

KNPR Kennedy NASA Procedural Requirements (document)

KSC John F. Kennedy Space Center

MOA Memorandum of Agreement

MOTS Modified Off-the-Shelf

MOU Memorandum of Understanding

NPR NASA Procedural Requirements (document)

OPR Office of Primary Responsibility

OSMA NASA Office of Safety and Mission Assurance

PDR Preliminary Design Review

PHA Preliminary Hazard Analysis

PLC Programmable Logic Controllers

PRACA Problem Reporting and Corrective Action

RSAR Reliability and Safety Assessment Report

S&MA Safety and Mission Assurance

SACA Software Assurance Classification Assessment

V&V Verification and Validation

 Page 29 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

APPENDIX C: DETERMINATION OF SOFTWARE ASSURANCE LEVEL OF EFFORT

The final part of the Software Assurance Classification Assessment consists of applying the
results of the previous assessment steps to determine the Software Class and criticality along
with a few additional criteria of the project’s software to determine the level of effort or
prioritization for applying software assurance. The Additional Software Assurance Criteria in
Table C-1 are used to help augment the Software Class for determination of the software
assurance level of effort and prioritization of software assurance resources. For each
program/project, assess the potential risks of the project’s software using the Software
Assurance Effort/Prioritization Criteria on the left column of Table C-1.

If the program/project’s software acquisition and development meets the criteria identified on the
left, then the corresponding software assurance level of effort on the right side will be assigned.
When the software acquired or developed meets the classification criteria for more than one
level of software assurance effort, then the highest level of software assurance will be applied.
Safety- critical software of any software class needs the most software assurance effort.

 Page 30 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

KNPR 8750.1
Rev. BASIC

Level of Software Assurance Effort

Software Assurance
Effort/Prioritization Criteria

Full/
High

Full/
Medium

Medium/
Medium

Minimum/
Low

N/A N/A or
upon

request

Software Classes (from NPR 7150.2)
Class A Human Flight X

Class B Non-human Flight X

Class C X

Class D X

Class E X

Class F, G, and H X

Software Safety Criticality X

Potential for:
Catastrophic Mission Failure (see NOTE 1) X

Partial Mission Failure (see NOTE 2) X

Potential for waste of resource investment (see NOTE 3)
Greater than 200 work-years on software X

Greater than 100 work-years on software X

Greater than 20 work-years on software X

Less than 20 work-years on software X

Potential for impact to equipment, facility, or environment (See NOTE 4)
Greater than $100M X

Greater than $20M X

Greater than $2M X

Less than $2M X

Table C-1: Additional Software Assurance Criteria

NOTE 1: Catastrophic mission failure: Loss of vehicle or total inability to meet remaining
mission objectives caused by software.

NOTE 2: Partial mission failure: Inability to meet one or more mission objectives caused by
software.

NOTE 3: Potential for waste of resource investment: This is a measure or projection of the
effort (in work-years: civil service, contractor, and other) invested in the software. The measure
of effort includes all software life cycle phases (e.g., planning, design, maintenance). This
shows the level of effort that could potentially be wasted if the software does not meet
requirements.

NOTE 4: Potential for impact to equipment, facility, or environment: This is a measure of the
cost (in dollars) of the physical resources that are placed at risk of damage, destruction, or loss
due to a software failure. Potential collateral damage is to be included. This is exclusive of
mission failure.

NOTE 5: Potentials listed above can apply to both test and operational scenarios where
software is a controlling factor.

 Page 31 of 31
KNPR-KSC-8750.1 Rev. DRAFT

RELEASED - Printed documents may be obsolete; validate prior to use.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2

