	Constellation Program

	Title
	Document No: CxP XXXXX
	Revision: BSL (Draft)

	
	Effective Date: TBD
	Page 9 of 348

	[image: image1.wmf]

	CxP 70022-04

REVISION B

	National Aeronautics and
Space Administration
	RELEASE DATE: March 26, 2008

	
	

	

	CONSTELLATION PROGRAM
Command, Control, communication, and information (c3i) interoperability standards book,
volume 4: information representation specification

	

	

REVISION AND HISTORY PAGE

	Status
	Revision
No.
	Change
No.
	Description
	Release
Date

	Baseline
	-
	
	Baseline (Reference per CxCBD 000164/13-1,
dated 8/31/07)
	10/11/07

	Revision
	A
	
	Revision A (Reference CxCBD 000216/2-1,
dated 12/19/07)
	01/11/08

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	NOTE:
Updates to this document, as released by numbered changes (Change XXX), are identified by a black bar on the right margin.

TABLE OF CONTENTS

PARAGRAPH
PAGE

APPENDIX

129APPENDIX A ACRONYMS AND ABBREVIATIONS AND glossary of terms

APPENDIX B OPEN WORK
141
appendix c applicability matrix
143
appendix d Information Model Specification
159
appendix e constellation system data types
160
appendix f Constellation System Units
169
appendix G Constellation Data Architecture System of Registries
190
appendix H Information Representation Properties
194
appendix I XTCE REQUIRED PRACTICES
200
appendix J C3I Information Structures
289
Appendix K Naming Guidance
382

TABLE OF CONTENTS

TABLE
page

45Table 3.4.2.2-1 Data Types

Table 3.4.3.1.1-1 Command Parameter Attributes
52
Table 3.4.3.1.2-1 Command Parameter Polynomial Calibrator Attributes
56
Table 3.4.3.1.3-1 Command Parameter INVERSE Polynomial Calibrator Attributes
56
Table 3.4.3.1.4-1 Command Parameter Line-Segment Calibrator Attributes
57
Table 3.4.3.1.5-1 Command Parameter INVERSE Line-Segment Calibrator Attributes
58
Table 3.4.3.1.6-1 Command Parameter Enumeration Calibrator Attributes
58
Table 3.4.3.2-1 Command Packing Attributes
60
Table 3.4.3.3.1-1 Command Instance Attributes
61
Table 3.4.3.3.2-1 Command Instance Parameter Attributes
63
Table 3.4.3.3.3-1 Command Verifier Attributes
64
Table 3.4.3.4.1-1 Command Sequence Attributes
65
Table 3.4.3.4.2-1 Command Sequence Parameter Attributes
66
Table 3.4.4.1-1 Telemetry Stream Attributes
68
Table 3.4.4.2-1 Telemetry Parameter Attributes
69
Table 3.4.4.3-1 Parameter Sampling Attributes
72
Table 3.4.4.4-1 Context switch Attributes
73
Table 3.4.4.5-1 Telemetry Parameter Polynomial Calibrator Attributes
74
Table 3.4.4.6-1 Telemetry Parameter INVErse Polynomial Calibrator Attributes
75
Table 3.4.4.7-1 Telemetry Parameter Line-Segment Calibrator Attributes
76
Table 3.4.4.8-1 Telemetry Parameter INVERSE Line-Segment Calibrator Attributes
76
Table 3.4.4.9-1 Telemetry Parameter Enumeration Calibrator Attributes
77
Table 3.4.4.10.1-1 Parameter Static Alarm Attributes
79
Table 3.4.4.10.2-1 Parameter Change Alarm Attributes
81
Table 3.4.4.10.3-1 Parameter Enumeration Alarm Attributes
82
Table 3.6.3-1 Key Exchange Representation Attributes
91
Table 3.6.5-1 AUDIT Representation Attributes
92
Table B1-1 To Be Determined Items
150
Table B2-1 To Be Resolved Issues
151
Table E1-1 Scalar Data Types
169
Table E1.1-1 Examples of Enumeration Data Types
172
Table E1.3-1 Integer Representations in different bases
174
Table E1.5-1 Time Representations
175
Table E2-1 Structured Data Types
176
Table F1.1 Unit Data Type
178
Table F1.2 Derived Units Data Type
179
Table F1.3 Approved NASA Non-SI Units
181
Table F2.1 Approved NASA SI Units
194
Table F3.1 Waived NASA non-SI units
198
Table I2.1.8.1.3.1.1-1 Enumeration Alarm Levels
225
Table I2.1.8.2.2.1-1 Inside StaticAlarmRange Element Name To Constellation Name
226
Table I2.1.8.2.2.2-1 Outside StaticAlarmRange Element Name To Constellation Name
228
Table I2.2.1-1 Uncalibrated ParameterTypes
231
Table I2.2.2-1 Calibrated ParameterTypes
234
Table I5.1.1-1 Telemetry Stream Attributes
252
Table I5.1.1-2 Telemetry Parameter Attributes
253
Table I5.1.1-3 Telemetry Sampling Attributes
253
Table I5.1.1-4 Line-Segment Calibrator Attributes
253
Table I5.1.1-5 Inverse Line-Segment Calibrator Attributes
253
Table I5.1.1-6 Static Alarm Attributes
253
Table I5.2.1-1 Command Parameter Attributes
258
Table I5.2.1-2 Command Parameter Enumeration Calibrator Attributes
259
Table I5.2.1-3 Command Packing Attributes
259
Table I5.2.1-4 Command Instance Attributes
259
Table I5.2.1-5 Command Instance Attributes
259
Table I5.2.1-6 Command Verifier Attributes
259
Table I7.1-1 Space System Required Practices
269
Table I7.1-2 Telemetry Meta Data Required Practices
269
Table I7.1-3 Space System/Header Required Practices
269
Table I7.1-4 Parameter Type Set Required Practices
270
Table I7.1-5 String Parameter Type Required Practices
270
Table I7.1-6 Unit Set Required Practices
271
Table I7.1-7 Enumerated Parameter Type Required Practices
271
Table I7.1-8 Enumeration List Required Practices
271
Table I7.1-9 Integer Parameter Type Required Practices
271
Table I7.1-10 Binary Parameter Type Required Practices
272
Table I7.1-11 Float Parameter Type Required Practices
273
Table I7.1-12 String Data Encoding Required Practices
273
Table I7.1-13 Float Data Encoding Required Practices
273
Table I7.1-14 Integer Data Encoding Required Practices
274
Table I7.1-15 Binary Data Encoding Required Practices
274
Table I7.1-16 Calibrator Required Practices
274
Table I7.1-17 Spline Calibrator Required Practices
275
Table I7.1-18 Polynomial Calibrator Required Practices
275
Table I7.1-19 Enumeration Alarm Required Practices
275
Table I7.1-20 Numeric Alarm Required Practices
275
Table I7.1-21 Inside Static Alarm RAnges Required Practices
276
Table I7.1-22 Outside Static Alarm RAnges Required Practices
276
Table I7.1-23 Change Alarm Ranges Required Practices
277
Table I7.1-24 Parameter Set Required Practices
277
Table I7.1-25 Parameter Required Practices
277
Table I7.1-26 Sequence Container Required Practices
278
Table I7.1-27 Telemetry Entry List Required Practices
278
Table I7.1-28 Telemetry Parameter Ref Entry Required Practices
278
Table I7.1-29 Telemetry Base Container Required Practices
279
Table I7.1-30 Command Meta Data Required Practices
279
Table I7.1-31 Argument Type Set Required Practices
279
Table I7.1-32 Meta Command Set Required Practices
279
Table I7.1-33 Meta Command Required Practices
280
Table I7.1-34 Argument List Required Practices
280
Table I7.1-35 Command Container Required Practices
280
Table I7.1-36 Command Entry List Required Practices
281
Table I7.1-37 Command Parameter Ref Entry Required Practices
281
Table I7.1-38 Command Argument Ref Entry Required Practices
281
Table I7.1-39 Command Fixed Value Entry Required Practices
282
Table I7.1-40 Command Container Base Container Required Practices
282
Table I7.1-41 VeriFIER Set Required Practices
282
Table I7.1-42 Complete Verifier Required Practices
282
Table I7.1-43 Block Meta Command Required Practices
283
Table I7.2-1 Command Parameter Attributes (3.4.3.1.1-1)
283
Table I7.2-2 Command Parameter Polynomial Calibrator Attributes (3.4.3.1.2-1)
285
Table I7.2-3 Command Parameter INVERSE Polynomial Calibrator Attributes (3.4.3.1.3-1)
285
Table I7.2-4 Command Parameter Line-SEgment Calibrator Attributes (3.4.3.1.4-1)
286
Table I7.2-5 Command Parameter INVERSE Line-SEgment Calibrator Attributes (3.4.3.1.5-1)
286
Table I7.2-6 Command Parameter ENUMERATION Calibrator Attributes (3.4.3.1.6-1)
286
Table I7.7 Command PACKING Attributes (3.4.3.2-1)
287
Table I7.2-8 Command INSTANCE Attributes (3.4.3.3.1-1)
287
Table I7.2-9 Command Instance Parameter Attributes (3.4.3.3.2-1)
288
Table I7.2-10 Command Verifier Attributes (3.4.3.3.3-1)
288
Table I7.2-11 Command Sequence Attributes (3.4.3.4.1-1)
289
Table I7.2-12 Command Sequence Parameter Attributes (3.4.3.4.2-1)
289
Table I7.2-13 Telemetry Stream Attributes (3.4.4.1-1)
289
Table I7.2-14 Telemetry Parameter Attributes (3.4.4.2-1)
290
Table I7.2-15 Parameter Sampling Attributes (3.4.4.3-1)
292
Table I7.2-16 Content Switch Attributes (3.4.4.4-1)
292
Table I7.2-17 Telemetry Parameter Polynomial Calibrator Attributes (3.4.4.5-1)
293
Table I7.2-18 Telemetry Parameter Inverse Polynomial Calibrator Attributes (3.4.4.6-1)
293
Table I7.2-19 Telemetry Parameter Line-SEgment Calibrator Attributes (3.4.4.7-1)
293
Table I7.2-20 Telemetry Parameter Inverse Line-SEgment Calibrator Attributes (3.4.4.8-1)
294
Table I7.2-21 Telemetry Parameter ENUMERATION Calibrator Attributes (3.4.4.9-1)
294
Table I7.2-22 Parameter Static Alarm Attributes (3.4.4.10.1-1)
294
Table I7.2-23 Parameter Change Alarm Attributes (3.4.4.10.2-1)
295
Table I7.2-24 Parameter Enumeration Alarm Attributes (3.4.4.10.3-1)
296
Table J1.9-1: Command Characteristic Enumeration
298
Table J1.11-1: DM Fragment Flag Enumeration
299
Table J1.12-1: DEM-Message Type Code Enumeration
299
Table J1.13-1: DEM-Operation Code Enumeration
300
Table J1.14-1: DEM-Origin Code Enumeration
301
Table J2.15-1: EPOCH Code Enumeration
301
Table J1.16-1: Time Scale Enumeration
302
Table J1.17-1: C3I Data Exchange Enumeration
302
Table J1.18-1: C3I Data Exchange Trigger Type Enumeration
303
Table J1.20-1: C3I Information Exchange Type Enumeration
303
Table J1.21-1: C3I Information Type Enumeration
305
Table J1.23-1: C3I Motion Imagery Exchange Type Enumeration
309
Table J1.25-1: C3I Sample Type Enumeration
309
Table J1.26-1: C3I Telemetry Exchange Type Enumeration
310
Table J1.29-1: C3I Transport Priority Request Enumeration
311
Table J1.30-1: C3I Transport Reliability Request Enumeration
311
Table J1.31-1: C3I Voice Data Exchange Type Enumeration
312
Table J1.32-1: Communication Channel Type Enumeration
312
Table J1.34-1: Communication Link Status Type Enumeration
313
Table J1.38-1: DHCP-Status Type Enumeration
314
Table J1.39-1: Error Correcting Code Enumeration
315
Table J1.46-1: Communication Link Type Enumeration
318
Table J1.49-1: Communication Modulation Type Enumeration
319
Table J1.55-1: Communication Spectrum Type Enumeration
320
Basic profile
320
CEV-CEV Communication
321
CEV-EVA Communication
321
CEV-GS Communication
321
CEV-ISS Communication
322
CEV-MS Communication
322
CEV-ROCC Communication
323
CLV-CEV Communication
324
CLV-GS Communication
324
CLV-MS Communication
324
CLV-ROCC Communication
325
Command
325
Command Occurrence
326
Command client profile
326
Command data format type
327
Command data integrity check type
327
Command exchange type
327
Command initation response type
328
Command log
328
Command mechanism
328
Command metering rate
329
Command packing map type
329
Command parameter
329
Command path
330
Command request type
330
Command response type
330
Command script status type
330
Command script type
331
Command sequence order
331
Command server profile
332
Command status type
333
Command store type
333
Command structure
333
Command verification action type
334
Command verifier
334
Commanded system
336
Communication Exchange Link
336
Cx CUI First category field
338
Cx CUI Index field
338
Cx CUI-Command category field
339
Cx CUI-Group category field
339
CxCUI - second category field
339
CxCUI -Unit Logical Field
340
CxCUI -Unit Physical Field
340
CxCUI -Unit Type Field
340
CxCUI Component field
341
CxCUI Constellation System field
342
CxCUI Parameter category field
342
CxCUI Subsystem field
343
CxCUI System field
343
CxCUI Unit field
344
CxCUI-Field
344
CxCUI-Structure
345
CxCUI-Unit category
346
DEM Command format
346
DEM Command structure assignment
347
DEM Content
347
DEM NonEncrypted data
348
DEM Structure Assignment
348
DEM System code
349
DEM Telemetry Structure Assignment
349
DEM Telemetry parameter group structure type
350
DEM Transport priority request type
350
DEM Transport reliability request type
351
DEM frag field
351
DEM-Content map
352
DEM-Data field
353
DEM-Encrypted data
353
DEM-Flags
354
DEM-FragmentFlag
355
DEM-Message type code
356
DEM-Operation code
356
DEM-Origin code
357
DEM-Time
357
DEM-Time field Epoch code
358
DEM-Time field scale code
358
DEM-Topic
359
Data Exchange Message
361
Data exchange action type
363
Data exchange capability
364
Data exchange mechanism
364
Data exchange message type
365
Data exchange time
365
Data exchange trigger type
365
Data rate
366
Data rate parameter
366
Distress alerting beacon type
366
Dynamic list mechanism
367
Emergency locator transmitter type
367
End item response telemetry type
367
End item telemetry verification status
368
Event
368
Event type
368
Exchange action
369
Expedited forwarding per hop behavior type
369
File exchange
369
File exchange type
370
File mechanism
370
Forward link range channel pN-Code
370
G.711-Literal
371
Information exchange type
371
Information type
372
Managed entry type
372
Managed parameter type
372
Management information base Type
373
Maneuver command type
373
Message exchange type
373
Meta data exchange
374
Meta data exchange type
374
Motion imagery data exchange
375
Motion imagery exchange type
375
Motion imagery mechanism
375
Navigation data exchange
376
Navigation data exchange type
376
Parameter
376
Parameter composition type
377
Parameter sampling specification
377
Parameter value pair
378
Peak Application Payload Bit Rate
379
Profile
379
Radiometric range type
379
Range safety command type
380
Recorded telemetry type
380
Sampling composition type
380
Sampling type
381
Security key mechanism
381
Security policy mechanism
382
Security policy type
382
Software event
382
Status
382
Stream
383
Stream parameter
383
Tagged enumeration (c3i)
384
Tagged enumeration literal
384
Telemetered system
384
Telemetry client profile
385
Telemetry data exchange
385
Telemetry exchange type
386
Telemetry format
386
Telemetry log
386
Telemetry mechanism
387
Telemetry server profile
387
Telemetry stream
387
Time data exchange
388
Time data exchange characteristic
388
Transmit Receive Turnaround Ratio
389
Voice data exchange
389
Voice data exchange type
389
Voice mechanism
390

FIGURE

17Figure 1.2.3-1 Example of a Command and Control Screen

Figure 1.3-1 Conceptual View of the Constellation Information Spaces
19
Figure 1.3-2 Constellation System Hierarchical Identifier
20
Figure 1.3-3 Data Exchange Packet Mapping: Commands
21
Figure 1.3-4 Data Exchange Packet Mapping: Telemetry
22
Figure 1.5-1 CxDA Specifications Framework
24
Figure 3.4.2.1.1.1-1 Single Sample Parameter Encapsulation
42
Figure 3.4.2.1.1.1-2 Single Sample Sampling Type
43
Figure 3.4.2.1.1.2-1 Multiple Sample Parameter Encapsulation
44
Figure 3.4.2.1.1.2-2 Multiple Sample Sampling Type
44
Figure 3.4.2.3-1 Byte Order Example
47
Figure I2.1.8.2.2.1-1 Inside Alarms
226
Figure I2.1.8.2.2.2-1 Outside Alarms
228
FIGURE K1.10.2-1: STRUCTURAL PERSPECTIVE CXSID CONSTRUCTION
395
FIGURE K1.10.3-1: AVIONICS PERSPECTIVE CXSID CONSTRUCTION
396
FIGURE K1.10.4-1: FUNCTIONAL PERSPECTIVE CXSID CONSTRUCTION
397
Figure K1.10.5-1 Mission Structure
400

1 Introduction
Constellation Systems will exchange a wide variety of information types in large volume that must be recognized and processed at both ends of each exchange. The Constellation data exchange protocol (CxP 70022-05, Constellation Program Command, Control, Communication, and Information (C3I) Interoperability Standards Book, Volume 5: Data Exchange Protocol Specification) supports data interoperability through the definition of Data Exchange Messages (DEMs) and rules governing their interchange. The information within these packets is subject to a set of conventions, both the information itself and its representation in a variety of contexts of use. This document defines the requirements for those common representations and encodings.

1.1 Purpose

In order to achieve Constellation mission success, it is critical that all operations personnel, including all ground controllers and onboard crew members, communicate using common nomenclature that unambiguously and uniquely defines all hardware and software items that may be utilized, the methods by which these are used, and telemetry data and commands concerning these items. This nomenclature also must be common among all operational products, including commands, procedures, displays, planning products, reference information, system handbooks, system briefs, mission rules, schematics, and payloads operations products, including location coding.

The purpose of the Command, Control, Communication, and Information (C3I) Information Representation Specification is to provide clear and unambiguous definition of telemetry, command and information exchange terminology and information structures. This document also defines the requirements for uniquely identifying all hardware and software and associated data that are referenced by products of the Constellation Systems operations community.

Exacting nomenclature becomes of increased importance over previous programs when the use of automated commanding in Constellation Systems is taken into consideration. Automated systems require that precise syntax and format standards be used when producing procedures or commands executed by Constellation Systems hardware or software.

The specification is intended for human comprehension and does not detail the terminology, structures and encoding at a machine-processable level. Those specifications are defined in the Constellation Data Architecture System of Registries (CxDASOR) described in Appendix G.

1.2 Scope

This Information Representation Specification applies to the many different types of information that will be exchanged between Constellation Systems. The requirements apply to a number of contexts of use, as defined by the following categories:

a.
Telemetry and Commands transmitted over communication links

b.
Message structures that are exchanged between systems

c.
Command and Control User Interfaces

d.
Documentation in a number of forms: specifications, schematics and labeling of resources onboard Constellation Systems

This document applies to all Constellation Systems and individuals participating in or contributing to Exploration Systems Mission Directorate (ESMD) mission operations. Mission operations include ground checkout, training, and simulations, as well as real‑time activities. The document also applies to all operations documentation (paper or electronic media) and other products making reference to Constellation-related equipment or activities.

1.2.1 Command and Telemetry

The C3I Information Model specifies the application-level metadata, telemetry and command data structures for C3I Data Assets and Data Exchanges. In order for measurements to be sampled at the required rates, telemetry packets need to have compact bit structures and efficient processing. Specifications of telemetry packets need to be translated to real-time databases and tables with efficient lookup mechanisms.

1.2.2 Extensible Markup Language (XML) Messaging

The C3I Information Model specifies the Extensible Markup Language (XML) Schemas, telemetry and command data structures for C3I Data Assets and Data Exchanges.

1.2.3 Command and Control User Interfaces

Supervisory command and control screens are typically demanding on real estate for naming data elements. Figure 1.2.3-1 shows a typical screen.

[image: image2.jpg]

Figure 1.2.3-1 Example of a Command and Control Screen

In the upper right of Figure 1.2.3-1, the display for a Thermal Control System (TCS), shows parameters such as ‘Pump Spd’, ‘Flowrate’, ‘Inlet T’, ‘Outlet T’, ‘Outlet P’ and ‘Bypass T’. These names are referred to in the C3I Information Model as “Constellation Display Names.”

1.2.4 Documentation

These requirements, in combination with the Constellation Data Architecture (CxDA) specifications, will ensure that consistent naming and terminology are used in a variety of operations documents, including specifications, schematics and labeling of resources on-board Constellation Systems.

This document applies to all Constellation Systems and individuals participating in or contributing to Constellation mission operations. Mission operations include ground checkout, training, and simulations as well as real-time activities. The document also applies to all operations documentation (paper or electronic media) and other products making reference to Constellation-related equipment or activities.

1.3 Technical Overview

The approach to information representation in the Constellation program will affect every Constellation system, will help enable critical interoperability, and must be able to stand the test of time over a period of several decades. For these reasons, a very carefully engineered strategy is required that accounts for the many (and sometimes competing) constraints, properties and characteristics that drive choices of information representation. The Constellation Data Architecture (CxDA) approach to information representation uses ontology-based registries and services to manage the terminology and relationships between concepts within the multiple domains of interest to Constellation. An ontology is a formal model of knowledge about information entities, their attributes and associations. Expressing domain knowledge in an ontology makes that knowledge explicit so it can then be validated and used to reason about objects in the domain.

As a constituent of the Constellation Data Architecture, the C3I Information Architecture (IA) conforms to the CxDA approach. Figure 1.3-1 illustrates how the C3I Information Model relates to other information spaces. An Enterprise Architecture (EA) sets the context for understanding who needs what information for which activities. Constellation System Architecture (CSA) represents Constellation Systems, their subsystems, resources and parameters. The EA and CSA models are provided in the Constellation Data Architecture (CxDA) Information Model.

C3I Information Architecture is a representation of the information entities, data types and units pertinent to telemetry, command, and information exchange. The scope of information representations in the C3I Information Architecture encompasses the terminology associated with identifier and information data systems, their respective data types and structures, and how data are encoded and decoded over telecommunication systems. Terminology and conventions on abbreviations for each entity type in each subject area of interest has to be standardized.

[image: image3.emf]Information

Architecture

provides telemetry, telecommand and

information exchange mechanisms for

determines the work described in

uses names and types consistent with,

provides context for

defines lifecycle activities for

Enterprise

Architecture

Constellation

System

Architecture

uses names and types consistent with,

provides context for

provides resources (e.g.: operations products)

and services for

Figure 1.3-1 Conceptual View of the Constellation Information Spaces

Identifiers and names are a central concern for the Information Architecture. Names are used by people. Identifiers, on the other hand, are computer processable. In some cases, people may use identifiers as well as names. The necessary requirement for identifiers is to be processable by Constellation systems and to have guaranteed uniqueness within a declared scope.

The Constellation Architecture requires a hierarchical identifier scheme to uniquely identify information entities. This is called the Constellation Identifier (CxID) and is illustrated in Figure 1.3-2. A decomposition of a vehicle is shown that focuses on the parameters associated with a specific valve. In addition to the values and units shown in the table, there are also other metadata for the range of numbers for the flow rate (for example, 0-400) and the enumerated values for the valve state (for example, 0-open, 1‑closed). Any specific component might have multiple parameters of different types.

[image: image4.png]Constellation System: CLV

Sub-System: Propulsion
Wl Fesowcesuel system

e e Iy
Tamrory e ore

Figure 1.3-2 Constellation System Hierarchical Identifier

A CxID uniquely identifies a parameter or command through a compositional hierarchy. This is the basis for translation and mapping to what is called the Constellation C3I Unique Identifier, abbreviated CxCUI – a compact form of identifier designed for use in telemetry and commanding.

C3I Information Architecture specifies common approaches to the construction of C3I identifiers and the naming and encoding of information types, data structures, data types, enumerations, units and algorithms.

The C3I activities that are within the scope of this specification:

a.
the specification of telemetry and command format definitions

b.
 the exchange of telemetry and command specifications between ground stations

c.
the encoding of telemetry and commands for use “over the wire” to vehicles

d.
the request and retrieval of telemetry data

Each of these calls is for different identifiers, data structures, encodings and protocols. As an example, Figure 1.3-3 illustrates the approach to packing commands into Data Exchange Messages (DEMs). The box in the upper left-hand corner contains two XML Schemas (or two parts of one XML Schema), one for Command Definition and one for Packing Maps. These XML Schemas are not themselves a Command Definition or Packing Map, but rather they define the required format of a Command Definition or Packing Map. In the near term, XML Telemetric and Command Exchange (XTCE) will be used as the XML Schema for the Command Definitions and Packing Maps. In the longer term, alternative XML Schemas that more directly represent the Constellation Data Architecture will be used.

[image: image5.png]User Settings.

Data Exchange Packet Mapping - Commands

XML defintons
atowfor sandare
oxchango of
Command
Gefntons and
backet maps.

Maps

DEM packet is packed bits as descrived in the Packet Map Instance

donties the packing map 1 uso.

Command
Data o
Packet
(satot,
lengty)

Schorma -2 way o dofne the structuro,
oot and, o om extnt, the semantcs of
XML documents

Instanca - popuatod command or tolomelsy
defnton

Fightsystem s notrequied to
store a8 XML fles,only
oxchango map & dofiton
nformaton as XML Does not
procludo anothor, moro compact
mechansm for bk
synchvonizaton

NOTE: Etrer sice CAN use.
XML fesidata fo cata drven
Software.

XML defintonsimags can

bo tansforrod (o f or

packet) & ngested by data

arivon fight softwaro to

oad onbord DB andior

Tavis.

Fing

Map Inoy Cormand

Definifon Data

‘System State
Information

. This s volume 4 content

Figure 1.3-3 Data Exchange Packet Mapping: Commands

These formats, and the instances of the formats that represent particular Commands, are stored in the Command Instance/Template Database, shown on the left-hand side of the diagram. The Command Instance document is an XML document that conforms to the Command Definition XML Schema.

The Command Instance document specifies the content of one or more Commands that can be issued to the spacecraft. It does not define the way in which the Commands are packed into a series of bits for transmission to the spacecraft. That packing information is contained in the Packing Map Instance document, which is an XML document conforming to the Packing Map XML Schema.

Using the Command Instance document and the Packing Map Instance document, the Packing Function can create a DEM containing the Commands defined in the Command Instance document and conforming to the Packing Map. The Commands are transmitted to the spacecraft in this DEM. The DEM also contains a signature that identifies the packing map that was used, so that the DEM can be unpacked after transmission.

The Command Instance and Packing Map Instance documents are also transmitted to the flight software for storage in an onboard database or in tables, which can then be used to unpack the DEM and validate the commands. Using the onboard Packing Map information, the Unpacking Function extracts the transmitted commands from the DEM and forwards it to the Command Validation Function. The Command Validation Function validates the Command using the Command Instance information that defines the Command.

[image: image6.png]Contextinfo

(tight mode,
etc)

Data Exchange Packet Mapping - Telemetry

tlomoty dofiiton

XML defintons
atowfor sandare
oxchangoof
Taemetry
Gefntons and
backet maps.

Maps
Toemetry
Data nto
Packet
(satot,
lengty)

Schoma -2 way o detna the
Stucture, content and, 1o some extan,
the semants of XML documents.

Instanco - populated command or

Systom s notroquiredto
stoe a5 XML les,anly

oxchango map & dofiton
nformaton as XML Doss.
ot precludo another, moro.

‘compact mocharism or
bulk synchvonizaton.
XML defintonsimags can
bo tansforrod (o f or
packet) & ngested by data
arivon fight softwaro to
oad onbord DB andior
Tavis.
Fing
Map Inoy Telemetry
Defifon Data

DEM packet is packed bits as descrived in the Packet Map Instance
‘Supports both traditional static telemetry listmode definitions AND growth

to dynamic telemetry definitions.

I This s voiume 4 content

Figure 1.3-4 Data Exchange Packet Mapping: Telemetry

Figure 1.3-4 shows the same approach applied to telemetry. The only difference here is that the DEM is transmitted from the spacecraft to the ground. Packing is performed by the flight software Packing Function (in the middle-left of the diagram). Unpacking is performed by the ground software Unpacking Function (on the right-hand side of the diagram), which then passes the extracted telemetry to the Telemetry Processing Function.

It is important to recognize in Figure 1.3-4 that although Packing and Unpacking Functions are reversed from the Command scenario in Figure 1.3-3, the Telemetry Builder Function remains on the ground. This is an offline function that builds the Telemetry Instance and Packing Map Instance documents, which govern the Unpacking and Telemetry Processing Functions on the ground. The information in the Telemetry Instance and Packing Map Instance documents is also stored in an onboard database or tables on the spacecraft to govern the Telemetry Packing Function so that the flight system can send properly formatted telemetry. Also, the flight context information is not a dynamic input to the Telemetry Builder Function, but is rather static information describing the possible flight modes (etc.) on which the telemetry formats may depend.

1.4 Audience

This document is intended for implementation throughout the Constellation Program. The audience includes all engineers, scientists and technicians working on C3I Projects and subordinate projects.

1.5 How to Read This Document

The C3I Information Architecture builds on the Constellation Data Architecture (CxDA). A number of requirements in this document reference documents of the CxDA. A summary of the CxDA specifications is shown within a framework of CxDA subject areas in Figure 1.5-1. The framework is depicted as a layered architecture where the foundational layer of names and identifiers support the definition of data types, information types and structures, algorithms, numerical methods and equations, and models of various types, ranging over the disciplines and domains of system engineering and knowledge engineering. Knowing this relationship to C3I Information Architecture will help the reader.

[image: image7.png]P 70150 ANXLO P 70150 AN
Ifrastrucure Constellation Data Architecture ODA Policy &
Specification Security odel

Governance
P 70160 P 017208
(DA Implem entation Provenance OxDA Ontology
Plan Schemas
I'4
Models
P 70160 ANXL owL OF 7::6:1;!4;11
COA Concept O OO8 APIS
Operations bzl
Algorithms & Tl
" Equations P 7017207
P 70160 AN 3 DA Algorithms &
OxDA Software Plan 3 “w Equations
3| = s Specication
= & Information Structures © 8
4 @ 5 2
P 70160 AN w|l = 2 P 7017205
G0A Domain £ 3 N a DA Information
Modeling Guidance o s 2 TypeSpedfication
g w Information Types =
&l £
5 h pr———
e 7017203
DA Encoding Rules = (CENIEHEED
DataTypes Typesspecication
P 70172-02 P 70172-05

DA XML Naming & > XM (xDA DataTypes

DesignRuies Names and Identifiers Spectication
LN

e 7017201 P 7017204

DA Naming & DA Metadata

dertifies Rules Specification

Figure 1.5-1 CxDA Specifications Framework

The following guidance should be of help in steering the reader to pertinent sections.

The specification is organized as follows:

Section 1.0, this section, is an introduction describing purpose, scope and audience. It provides a technical overview and other technical considerations, along with key concepts. Some aspects of governance pertaining to change authority and responsibility are described.

Section 2.0 lists applicable and reference documents. Applicable documents include NASA documents and industry standards efforts that have informed the work of creating the C3I Information Requirements Specification. Reference documents are those that will help in making use of this specification.

Section 3.0, entitled Requirements, is extensive and constitutes the main content of the specification. The section covers data exchange message formats; data types; units; transformations and algorithms; metadata for command, telemetry, voice, motion imagery and files; encoding; identifiers; metadata registration; configuration information; security.

Section 4.0 describes the verification approach and requirements.

1.6 Change Authority/Responsibility

Proposed changes to this document shall be submitted by a Constellation Program Change Request (CR) to the appropriate Constellation Control Board for consideration and disposition. The CR must include a complete description of the change and the rationale to justify its consideration. All such requests will be processed in accordance with CxP 70073-01-01, Constellation Program Management Systems Requirements, Volume 1: Configuration Management Requirements, Book 1: Configuration Management Plan.

2 Documents

The following documents include specifications, models, standards, guidelines, handbooks, and other special publications. The documents listed in this paragraph are applicable to the extent specified herein.

2.1 Applicable Documents

	CxP 70041
	NExIOM Standard for Tool, Model and Simulation Data

	CCSDS 301.0-B-3
	Time Code Formats. Recommendation for Space Data System Standards, Blue Book. Issue 3. Washington, DC: CCSDS, January 2002.

http://public.ccsds.org/publications/archive/301x0b3.pdf

	RFC 3280, Section 4
	Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, Section 4 Certificate and Certificate Extensions Profile

	IEEE 754
	IEEE Floating Point Standard

http://en.wikipedia.org/wiki/IEEE_754
http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html

	ISO/IEC 8825-2

ITU-T Rec. X.691
	ASN.1 Encoding Rules
Specification of Packed Encoding Rules (PER)

http://asn1.elibel.tm.fr/standards/

	SAML
	SAML V2.0 Specification Set

	Unicode Standard
	The Unicode Standard, Version 5.0, Fifth Edition, The Unicode Consortium, Addison-Wesley Professional, Oct. 27, 2006. ISBN 0321480910.

	
	World Wide Web Consortium (W3C) XML Signature Syntax and Processing, Chapter 4&5, W3C Recommendation 12 February 2002

	
	World Wide Web Consortium (W3C) XML Encryption Syntax and Processing, Chapter 3, W3C Recommendation 10 December 2002

2.2 Reference Documents

The following documents contain supplemental information to guide the user in the application of this document.

	CCSDS 660.0-B-1
	XML Telemetric and Command Exchange (XTCE) Recommended Standard (Blue Book) October 2007

http://public.ccsds.org/publications/archive/660x0b1.pdf

	CCSDS 660.0-G-1
	XML Telemetric and Command Exchange (XTCE) Informational Report (Green Book) July 2006

http://public.ccsds.org/publications/archive/660x0g1.pdf

	CxP 70000
	Constellation Architecture Requirements Document

	CxP 70022-05
	Constellation Program Command, Control, Communication, and Information (C3I) Interoperability Standards Book,
Volume 5: Data Exchange Protocol Specification

	CxP 70073-01-01
	Constellation Program Management Systems Requirements, Volume1: Configuration Management Requirements, Book 1: Configuration Management Plan

	CxP 70073-03
	Constellation Program Management Systems Requirements, Volume 3: Data Architecture Requirements

	CxP 70078
	Constellation program Computing Systems Architecture Description Document (CSADD)

	CxP 70160
	Constellation Program Data Architecture Implementation Plan

	CxP 70160-ANX 01
	Constellation Program Data Architecture, Annex 01: Concept of Operations

	CxP 70160-ANX 02
	Constellation Program Data Architecture, Annex 02: Software Plan

	CxP 70172-01
	Constellation Program Data Architecture Specification, Volume 1: Naming and Identifier Rules

	CxP 70172-02
	Constellation Program Data Archtecture Plan, Volume 2: Extensible Markup Language (XML) Naming and Design Rules

	CxP 70172-03
	Constellation Program Data Architecture Specification, Volume 3: Encoding Rules

	CxP 70172-10
	Constellation Program Data Architecture Specification, Volume 10: Application Programming Interface (API) Specifications

	CxP 70172-13
	Constellation Program Data Architecture, Volume 13: Domain Modeling Guidance

	CxP 70172-14
	NASA CxP Data Architecture Implementation Plan, Volume 14: Policy and Securtity Model

	IEEE/ASTM SI 10 TM-2002
	Standard for the International System of Units (SI): The Modern Metric System

	ISO 8601
	ISO Standard for Date and Time

http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

	ISO 8601:2000
	Data Elements and Interchange Formats, Information Exchange, Numeric Representation of Dates and Time. International Standard, ISO 8601:2000. 2nd ed. Geneva: ISO,

http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

	ITU-T Rec. X.680 ISO/IEC 8824-1
	Abstract Syntax Notation One (ASN.1)

Specification of Basic Notation

	ITU-T Rec. X.691 ISO/IEC 8825-2
	ASN.1 Encoding Rules
Specification of Packed Encoding Rules (PER)

3 Requirements

Information Representation encompasses how information entities that occur in telemetry and command are named; how their data types and units are unambiguously specified; and how they relate to Constellation Systems, subsystems, devices, resources and other components of the Constellation Architecture. Constellation System software (and hardware) will need to be designed to encode and decode telemetry and command messages. Without tools, new encoding rules typically take longer to implement and deploy. If encoding and decoding are done manually, or utilize tools that have not seen as much thorough interoperability tests as tools that have been in use much longer and more widely, errors will occur. For these reasons, standard encoding-schemes are required.

3.1 Data Types

Data types can be scalar or structured. A scalar data type has a single value that can be, for example, of type boolean, integer, floating point number, string, time or an enumeration. A structured data type has multiple scalar values. Examples of structured data types are arrays and sets.

[C3I-1535] Constellation systems shall specify all data type definitions in ASN.1 (Abstract Syntax Notation).

Rationale: ASN.1 is a implementation-neutral standard for describing data types and structures and their encodings that is widely adopted for realtime command and control across a broad range of industries. ASN.1 specifications are extensible, composable and reusable for telemetry and command definitions needed for Constellation system elements. The expressiveness and modularity of ASN.1 addresses a broad scope of applications including IPCL, electronic procedures, ground operation procedures, and interoperability with simulation and training facilities. Consistent use of ASN.1 is assured by automated transformations from the Constellation Data Architecture models and the use of Constellation identifiers, a controlled vocabulary, and explicit choices for representing information structures. ASN.1 is the basis for the specification of CCSDS Space Link Extensions (SLE) data types, information structures and protocols.
3.1.1 Scalar Data Types
[C3I-423] Constellation Systems shall use standard Scalar Data Types as defined in Appendix E, Constellation System Data Types.

Rationale: For interoperability to occur without the need for translations, mappings, and other conversions, data types should be the same for all Constellation Systems.

[C3I-1404] Constellation Systems shall use registered data types defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: Standard data types will be defined in the CxDASOR. Use of consistent data types and their definitions is critical for system interoperability.

3.1.1.1 String Representation

Strings take a number of forms depending on the range of characters that are available (e.g., different language alphabets and special symbols), and on the range of admissible characters for string representations of specific types of data (e.g., numeric strings). There are numerous standards in place, ranging from American Standard Code for Information Exchange (ASCII), which is limited to Roman alphabet characters, to Unicode1, which is intended to support the full spectrum of natural language alphabets across the world. In addition to the character set standard, which is an assignment of a numerical value to each supported character, there is the issue of transfer encoding, which is the way in which that numerical value itself will be represented in communicated messages, storage, etc. Note that both UTF-8 and UTF‑16 are required. This allows phasing from UTF-8 to UTF-16.

NOTE 1:
See Unicode Standard, Version 5.0, Fifth Edition, The Unicode Consortium, Addison-Wesley Professional, Oct. 27, 2006 in Section 2.1, Applicable Documents, for a reference.
[C3I-427] Constellation Systems shall use Unicode character sets encoded according to the UTF-8 standard.

Rationale: UTF-8 includes ASCII, otherwise referred to as IA-5 (International Alphabet 5, as standardized by International Organization for Standardization [ISO]) as the first 128 values. The Internet Engineering Task Force (IETF) requires all Internet protocols to identify the encoding used for character data with UTF-8 as at least one supported encoding. The Internet Mail Consortium (IMC) recommends that all e-mail programs must be able to display and create mail using UTF-8.

[C3I-1405] Constellation Systems shall use Unicode character sets encoded according to the UTF-16 standard.

Rationale: UTF-16 is the native internal representation of text in the Microsoft Windows NT/Windows 2000/Windows XP/Windows CE, Qualcomm BREW, and Symbian operating systems; the Java and .NET byte code environments; Mac OS X's Cocoa and Core Foundation frameworks; and the Qt cross-platform graphical widget toolkit.

3.1.1.2 Integer Representation

[C3I‑430] Constellation Systems shall encode integers as 8-, 16-, 32-, or 64-bit unsigned integers, with the leading bit being the most significant bit, or signed integers in two’s complement form.

Rationale: Binary encoding is more processing and space-efficient than encoding the sequence of numeral characters.

3.1.1.3 Digital Pattern Representation

[C3I-1501] Constellation Systems shall encode digital pattern data as 8-, 16-, 32-, or 64-bit unsigned integers.

Rationale: Binary encoding is more processing and space-efficient than encoding the sequence of numeral characters.

3.1.1.4 Floating Point Representation

A real number is represented as a factor, called the mantissa, multiplied by a power (the exponent) of a base. Different bases yield different approximations to real numbers, and conversion between them is limited in accuracy.

[C3I-433] Constellation Systems shall treat IEEE-754, IEEE Floating Point Standard, single-precision floating point numbers as a distinct data type from IEEE-754 double-precision floating-point numbers.

Rationale: Explicit communication of the type of floating point number is necessary to ensure that the encoding is correctly interpreted.

[C3I-432] Constellation Systems shall use the IEEE Standard 754 to represent single‑precision floating-point numbers.

Rationale: The IEEE standard is the most widely used in computer systems. It uses an implicit base of 2, and explicitly specifies the mantissa and the exponent. Explicit communication of the type of floating point number is necessary to ensure that the encoding is correctly interpreted.

[C3I-1502] Constellation Systems shall use the IEEE Standard 754 to represent double‑precision floating point numbers.

Rationale: The IEEE standard is the most widely used in computer systems. It uses an implicit base of 2, and explicitly specifies the mantissa and the exponent. Explicit communication of the type of floating point number is necessary to ensure that the encoding is correctly interpreted.

3.1.1.5 Time Representation

Time takes a number of forms, depending on the units used (e.g., year, day, minute, millisecond, or combinations thereof) and the origin (i.e., time zero) to which the time value is related.

[C3I-434] Constellation Systems shall represent time using data types specified in Appendix E Constellation System Data Types, in compliance with CCSDS 301.0-B-3, Time Code Formats: Recommendation for Space Data System Standards Book, Blue Book, Issue 3, Washington, DC: CCSDS, January 2002.

Rationale: Data types have been specified for various granularities of time indication (Date, Time, Year, Month, Hours, Minutes). This approach is used by modern programming languages and provides a great deal of flexibility. Definitions of the binary or machine representation of time (epoch and number of bits) are necessary to ensure sufficient number of bits to preclude roll-over during anticipated operational lifetime of the program, and to allow adequate precision in the representation of individual times.

3.1.1.6 Enumeration Representation

An enumeration is a set of literals from which a single value is selected. That value is represented as an integer within a standard encoding appropriate to the range of integer values.

Appendix J of this specification details C3I and Communication enumerations that are currently defined in the CxDASOR.

3.1.2 Structured Data Types

A structured data type is a structure containing multiple scalar values. Structured data types can be arrays of various forms, containers and sets.

Appendix J provides descriptions of C3I Information Structures.

[C3I-1429] Constellation Systems shall use standard Structured Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types.

Rationale: For interoperability to occur without the need for translations, mappings, and other conversions, data types should be the same for all Constellation Systems.

[C3I-1430] Constellation Systems shall use registered structured data types defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: Standard data types will be defined in the CxDASOR. Use of consistent data types and their definitions is critical for system interoperability.

3.1.2.1 Arrays

[C3I-1431] Constellation Systems shall use standard Array Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types.

Rationale: For interoperability to occur without the need for translations, mappings, and other conversions, data types should be the same for all Constellation Systems. Arrays are a commonly used data structure, and for multiple dimension arrays there needs to be agreement on the ordering of dimensions and their indices.

3.1.2.2 Physical Addresses

[C3I-1432] Constellation Systems shall use standard Data Types for Physical Addresses as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types.

Rationale: For interoperability to occur without the need for translations, mappings and other conversions, data types should be the same for all Constellation Systems. A physical address provides a low-level mechanism to set and get analog, digital or memory locations within a system, subsystem or resource.

3.1.2.3 Containers

[C3I-1503] Constellation Systems shall use standard Container Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types.

Rationale: For interoperability to occur without the need for translations, mappings and other conversions, data types should be the same for all Constellation Systems. The representation of ordered and unordered containers (collections in which an item may appear more than once) is a common need for interoperability.

3.1.2.4 Sets

[C3I-1433] Constellation Systems shall use standard Set Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types.

Rationale: For interoperability to occur without the need for translations, mappings, and other conversions, data types should be the same for all Constellation Systems. The representation of ordered and unordered sets is a common need for interoperability.

3.2 Units

The C3I’s Units are based on the CxDA units ontology, which provides a comprehensive reference for the scientific, engineering, and management units that are needed in NASA exploration systems. The intention is for this ontology to serve as the authoritative source for communication and interpretation of units in mission systems, including telemetry. The units ontology is not authoritative in a global sense, because various standards organizations are responsible for the standardization and definition of units. The CxDA units ontology is, however, based largely on the International System of Units (SI), as described in (IEEE/American Society for Testing and Materials [ASTM] SI 10 TM - 2002). In addition, it includes units from other systems, such as British units for length, weight, and heat, and it draws on the SI standard for conversions between these units and their metric counterparts.

The CxDA Units ontology supports system interoperability in several ways. First, it provides a formal way of specifying units explicitly, thereby avoiding tacit conventions that are prone to misinterpretation. Second, the ontology explicitly distinguishes between variants of a given unit, for example, day (representing a solar day) and sidereal day. Third, the ontology explicitly distinguishes between units of different types that are commonly referred to with the same name: for example, second as a measure of time, and second as a measure of angle. Fourth, the ontology provides explicit conversion information, serving as a single point of reference for such conversions.

Approved units are specified in Appendix F. All units have numeric codes from a controlled vocabulary of units. These codes are used to unambiguously denote a choice of unit in Telemetry packets and commands.

[C3I-435] Constellation Systems shall use the NASA Non-SI Units of Measure in Appendix F, Constellation System Units, Table F1-1, Approved NASA Non-SI Units.

Rationale: The C3I Units ontology supports system interoperability in several ways. First, it provides a formal way of specifying units explicitly, thereby avoiding tacit conventions that are prone to misinterpretation. Second, the ontology explicitly distinguishes between variants of a given unit, for example, day (representing a solar day) and sidereal day. Third, the ontology explicitly distinguishes between units of different types that are commonly referred to with the same name, for example, second as a measure of time, and second as a measure of angle. Fourth, the ontology provides conversion information, serving as a reference for such conversions. The full set of units (including non-SI units, not listed here), were listed alphabetically and assigned numbers starting with 5 and successively incremented by 5. The increment is intended to allow for the insertion of additional units. The assignment does not take account of the area to which a unit belongs. This is because some units belong to more than one dimension. For example, Joule belongs to EnergyAndWork as well as ThermalEnergy.

[C3I-424] Constellation Systems shall use standard NASA SI Units of Measure as defined in Appendix F, Constellation System Units, Table F2-1, Approved NASA SI Units.

Rationale: For interoperability to occur without the need for translations, mappings, and other conversions, units should be the same for all Constellation Systems.

[C3I-1436] Constellation Systems shall use standard waived NASA Non-SI Units of Measure as defined in Appendix F, Constellation System Units, Table F3-1, Waived NASA non-SI units.
Rationale: For interoperability to occur without the need for translations, mappings, and other conversions, units should be the same for all Constellation Systems.

[C3I-1504] Constellation Systems shall use, in telemetry packet and command metadata, the QNAME for each unit from the controlled vocabulary of units as specified in Appendix F, Constellation System Units, Tables F1-1, F2-1 and F3-1.
Rationale: For interoperability to occur without the need for translations, mappings, and other conversions, units should be the same for all Constellation Systems.

3.3 Transformations and Algorithms

In this document, the term “transformation” refers to the conversion of values between engineering units. “Calibration” refers to the conversion of raw counts to engineering units, or vice versa (the latter sometimes called “reverse calibration”), and is a form of transformation. “Algorithm” encompasses the broader set of mathematical equations.

Algorithms are needed in a number of cases. In many situations, calibration requires algorithms to be standardized. In certain Constellation Systems, such as ground stations and specific data consumer points, algorithms are needed for a number of signal processing tasks, such as signal enhancements, compressions and decompressions. In these cases, endpoints need to ensure that they use the same processing algorithms with the same coefficients. A standard identification scheme will be used for both pre-defined and formally-described algorithms and their coefficients. This supports the verification of the correct use of algorithms and facilitates reuse of algorithms across Constellation Systems.
[C3I-1536] Constellation systems shall specify all transformations and algorithms in a NExIOM XML Schema as specified in CxP 70041 NExIOM Standard for Model, Tool and Simulation Data.

Rationale: NExIOM is a Constellation Program specification that includes a set of XML Schemas used to provide interoperability between tools, simulations, and information assets for Modeling and Simulation. The NExIOM schemas include constructs to specify aspects of models, including algorithms and mathematical equations, which can be used for purposes of data exchange.

3.3.1 Parameter Transformations

[C3I-442] Constellation Systems shall use Parameter Transformations that are registered in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: Some parameters may require algorithms to compute derived variables or derived units. Units belonging to different systems of units (e.g., SI, Imperial) cannot be used together without converting from one to the other. Units to be converted to each other will measure the same dimension, and they will usually do this linearly. Their conversion can, therefore, be specified by a single factor. It is essential to have a single authoritative point of reference for these factors to ensure accuracy of computations and correct interpretation of telemetry and other communicated values. By providing mechanisms for transformation, interoperability is assured.

3.3.2 Units of Measure Conversions

[C3I-445] Constellation Systems shall use units of measure conversions that are registered in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: Units belonging to different systems of units (e.g., SI, Imperial) cannot be used together without converting from one to the other. Units to be converted to each other will measure the same dimension, and they will usually do this linearly. Their conversion can, therefore, be specified by a single factor. It is essential to have a single authoritative point of reference for these factors to ensure accuracy of computations and correct interpretation of telemetry and other communicated values. By providing mechanisms for conversion, interoperability is assured.

3.3.3 Calibration Set Switching

Calibration set switching (referred to as simply calibration switching) is not a sampling composition, but rather an enhancement to real-time telemetry data processing. It is necessary to present the rules for calibration switching in this standard to describe how calibration switch parameters will be arranged within a data block with respect to parameters (contiguous or group) that are dependent on the calibration switch.

Parameter values can be calibrated (converted from raw counts to engineering units or from raw counts to a state code) by applying a calibration equation. The calibration set used for this conversion can be determined by the value of a calibration switch parameter.

When the value of a calibration switch parameter is within the range of values for a specific calibration set, that calibration set will be used for processing the parameter value to be calibrated.

The range upon which a calibration set will be used is either a discrete code (e.g., “ON” = 0 to 1) or a literal range (e.g., 4 to 7). Calibration set switching can be supported only when both the calibration switch parameter and the dependent parameter are present in the same data block. In addition, the location of the calibration switch parameter will remain constant for a given format. The calibration switch parameter may not be dependent on a calibration switch parameter itself, nor may it be counter-dependent or range-dependent.

[C3I-1427] Constellation Systems shall use Calibration Set Switching for parameters when appropriate.

Rationale: Calibration set switching (referred to as simply calibration switching) is not a sampling composition, but rather an enhancement to real-time parameter data processing. It is necessary to present the rules for calibration switching in this standard to describe how calibration switch parameters will be arranged within a data block with respect to parameters (contiguous or group) that are dependent on the calibration switch. This requirement does not apply to all Constellation Systems. Refer to Appendix C, Applicability Matrix for which systems need to comply.

3.3.4 Limit/Expected State Set Switching

Limit/expected state set switching (referred to as simply limit switching) is not a sampling composition, but rather an enhancement to real-time telemetry data processing. It is necessary to present the rules for limit switching in this standard to describe how limit switch parameters will be arranged within a data block with respect to parameters (typical or group) that are dependent on the limit switch.

Parameter values can be limit/expected state sensed (the determination of parameter samples exceeding calibrated caution/warning limits or parameter samples not equating to the expected state code) by the application of a specific limit/expected state set. The limit set used for determination of limit violations can be determined by the value of a limit switch parameter.

When the value of a limit switch parameter is within the range of values for a specific limit set, that limit set will be used for processing the parameter value to be limit sensed. The range upon which a limit set will be used is either a discrete code (e.g., "ON"= 0 or 1) or a literal range (e.g., 4.0 to 7.0). Limit set switching can be supported only when both the limit switch parameter and the dependent parameter are present in the same data block. In addition, the location of the limit switch parameter will remain constant for a given format. The limit switch parameter may not be dependent on a calibration switch parameter, nor may it be counter-dependent or range-dependent.

[C3I-1428] Constellation Systems shall use Limit/Expected State Set Switching for parameters when appropriate.

Rationale: Limit/expected state set switching (referred to as simply limit switching) is not a sampling composition, but rather an enhancement to real-time parameter data processing. It is necessary to present the rules for limit switching in this standard to describe how limit switch parameters will be arranged within a data block with respect to parameters (contiguous or group) that are dependent on the limit switch. This requirement does not apply to all Constellation Systems. Refer to Appendix C Applicability Matrix for which systems need to comply.

3.3.5 Relativistic Corrections for Gravitational Time Dilation

[C3I-1505] Constellation Systems shall use a standard algorithm for gravitationally separated clocks to correct for the relativistic effect of time dilation.

Rationale: Gravity can cause relativistic effects that result in time difference on clocks in difference locations in space. Such gravitational time dilation is found in accelerated frames of reference in the gravitational field of massive objects. Clocks which are far from massive bodies, that is at higher gravitational potentials, run faster, and clocks close to massive bodies, or at lower gravitational potentials run slower. It is important that the corrections for these time differences undergo the same transformations. This requirement does not apply to all Constellation Systems. Refer to Appendix C Applicability Matrix for which systems need to comply.

3.4 Metadata

The commonly held definition of metadata is “Data about Data”. Such data is often to do with provenance, governance, formatting and value ranges. Metadata can be used to describe an information asset so as to facilitate the understanding, use and management of data. CxDA employs common consistent metadata attributes for describing Cx data in HW, SW, and documents. Different kinds of the metadata are distinguished, for example, what format the data is in, where it is used (descriptive metadata) and who can access it (administrative metadata).

Descriptive metadata describes the content, format and use of data. Administrative metadata is information used to manage the digital data resources or control access to them. This may include information on access control, confidentiality, copyright, licensing and ownership.

Metadata is sometimes used to refer to properties that should be specified as attributes of data. In these cases the metadata defines the makeup of a data type. Someone’s metadata may be someone else’s data attributes. There is in other words, a contextual nature to what is metadata and what are attributes.

Take for example, the metadata that states that something is ITAR restricted. This Boolean property is not metadata to someone that needs to have a system provide controls on how documents become available to different parties. The ITAR restricted flag is operational data in the context of a governed content management system.

To address this difficulty in deciding what is and is not metadata, the approach taken in the Constellation Program is to define a core set of properties called ‘NASA CORE’ in an ‘nc’ Metadata (following the industry metadata standard ‘Dublin Core’ which has the ‘dc’ Metadata). C3I, in following CxDA, also specifies a number of other properties, defined in other NASA Metadata, as metadata. These properties are those that have controlled vocabularies as their value ranges.

In the Constellation Program, in addition to managing information about digital assets, we also need to manage information about physical objects and events such as tools, locations, data exchanges, etc. In so much as this information is non-operational (that is it changes slowly, not in real time and requires following organizational procedures and reaching consensus in order to change), we will consider this information to be metadata.

The CxDA definition of metadata includes data about data as well as non-operational data about some physical entities and events. Data associations between Data Entities provide the semantics of the Data in its subject area of concern. Structural metadata is information that relates individual digital resources to each other. Relationships are central to semantic clarity of the Data. Structural metadata connects individual digital resources to make up logical units (e.g., information that relates individual images of pages from a book to the others that make up the book). For this reason, relationships are also part of the controlled vocabulary.

In the context of telemetry, where the data are the content of the telemetry streams, metadata about an individual data item might typically include the name of an individual telemetry point, its length, its type, its position in the packet, its units, its system of origin, etc.

Additional metadata associated with telemetry would likely include calibration information, alarm or limit information, specialized processing algorithm and various types of documentation.

Finally, typical metadata associated with telemetry includes information on how it is “packaged” for transmission from creation point to a recipient.

[C3I-1537] Constellation systems shall specify all Metadata specification models in ASN.1 (Abstract Syntax Notation).

Rationale: ASN.1 is an implementation-neutral standard for describing data types and structures and their encodings that is widely adopted for realtime command and control across a broad range of industries. ASN.1 specifications are extensible, composable and reusable for telemetry and command definitions needed for Constellation system elements. The expressiveness and modularity of ASN.1 addresses a broad scope of applications including IPCL, electronic procedures, ground operation procedures, and interoperability with simulation and training facilities. Consistent use of ASN.1 is assured by automated transformations from the Constellation Data Architecture models and the use of Constellation identifiers, a controlled vocabulary, and explicit choices for representing information structures. ASN.1 is the basis for the specification of CCSDS Space Link Extensions (SLE) data types, information structures and protocols.
3.4.1 Lifecycle

Constellation projects are required to define metadata and Constellation systems are required to generate and exchange those metadata. Note that the requirement to define metadata applies to the project, not the system. It is a “process” requirement that will be moved to the appropriate management plan on a future CR.

Definition of terms:

a.
Define. To state or set forth the meaning of. This is where the project states what its metadata are. Requirements for the definition of metadata are located in CxP 70073-03, Constellation Program Management Systems Requirements, Volume 3: Data Architecture Requirements.

b.
Generate. The term “generate” is to produce. In the case of metadata, this is the equivalent to instantiate. For example, if the project has defined a time stamp as metadata, then the system will need to populate the field by generating that time stamp.

c.
Exchange. To give and receive reciprocally. This means that the system will send its metadata upon request.

[C3I-119] Constellation systems shall generate Metadata values that comply with Section 3.4.

Rationale: Common command metadata supports interoperability and discovery between systems. This metadata may include a description, status return codes, related system state or measures and references, argument metadata (names, units, types, limits, enumerations, description, etc.).
[C3I-229] Constellation systems shall exchange Metadata that comply with Section 3.4.

Rationale: Interoperability requires consistent naming, typing and structuring. Constellation Systems must have their metadata defined and be prepared to provide their metadata upon request. It is not required that metadata be transmitted with the data it describes, but it must be possible to retrieve the data's associated metadata when needed. The C3I data exchange protocol (Volume 5) contains metadata pointers that can be used to locate and retrieve metadata. Metadata repositories should be located appropriately. For example, it may not be possible to store metadata on-board a vehicle. In this case, there should be an accessible repository on the ground from which the metadata can be retrieved.

3.4.2 Common Telemetry and Command Terminology

The definitions that follow are common to both telemetry and command metadata.

3.4.2.1 Data Exchange Message (DEM) Mechanism Data Unit Sampling

The DEM Data Block is the area of the data exchange message that contains the “Mechanism Data Unit” (user-defined message data) for telemetry and commands. Mechanism data units are associated with a specific DEM topic identified by a given System, Type, and Instance. The term “parameter,” when used in this document, represents both the measurements of telemetry and the fields of commands.

The rules of sampling for Constellation telemetry and command data are implemented through the use of sampling types. Multiple sampling types may be used to arrange data while constructing a mechanism data unit; consequently, by incorporating the rules of sampling in processing software, the data stream can be decomposed into parameters. The rules of sampling are Single Sample and Multiple Sample.

Sampling is related to “commutation” in telemetry – the ordered placement of one or more values of multiple telemetry parameters in packets in order to satisfy sampling frequency requirements.

3.4.2.1.1 Standard Sampling Types

The rules of sampling types describe the valid arrangement of bits in a sample and how the samples of a parameter can be arranged in a mechanism data unit. For all sample types, the bits within a sample are contiguous. The sub-sections that follow describe the sampling types supported by Constellation.

Although telemetry messages can use both single and multiple sampling types, command messages must use only the single sampling type.

[C3I-1506] Constellation Systems shall use standard sampling types to arrange parameters within a mechanism data unit of a Telemetry Data Exchange Message.
Rationale: For interoperability to occur, Constellation Systems need to adhere to the standard rules for composition so that all data exchanged is interpreted the same.

[C3I-1507] Constellation Systems shall use standard sampling types to extract parameters from a mechanism data unit of a Telemetry Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the standard rules for composition so that all data exchanged is interpreted the same.

[C3I-1508] Constellation Systems shall use single sample sampling type to compose a Command Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the standard rules for composition so that all data exchanged is interpreted the same.

[C3I-1509] Constellation Systems shall use single sample sampling type to decompose a Command Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the standard rules for composition so that all data exchanged is interpreted the same.

3.4.2.1.1.1 Single Sample

As the name implies, a parameter with a Single Sample sampling type only has one sample in each instance of a mechanism data unit. The location and length of the parameter remains constant for a given DEM topic. Figure 3.4.2.1.1.1-1 shows an example of three Single Sample parameters encapsulated in mechanism data.

[image: image8.emf]A

C

B

Start bit i

A is a 16 bit parameter located at start bit i.

B is an 8 bit parameter located at start bit j.

C is a 32 bit parameter located at start bit k.

32 8 16

Start bit j Start bit k

Figure 3.4.2.1.1.1-1 Single Sample Parameter Encapsulation

Figure 3.4.2.1.1.1-2 shows an example of a parameter with a Single Sample sampling type that appears only once in each instance of a mechanism data unit. In this example, the mechanism data unit is completely encapsulated in one instance of a DEM data block.

[image: image9.emf]Single Sample Sampling where:

A is a 16 bit parameter located at start bit i.

A

Start bit i

16

A

Start bit i

16

A

Start bit i

16

1

2

3

DEM Header

and Content

Map

DEM Header

and Content

Map

DEM Header

and Content

Map

Figure 3.4.2.1.1.1-2 Single Sample Sampling Type

3.4.2.1.1.2 Multiple Sample

Multiple Sample sampling type is defined when multiple samples of parameter exist within each instance of a mechanism data unit. A parameter with a Multiple Sample sampling type contains an integer number of samples of the same parameter. The location of the first sample of the parameter within the mechanism data unit remains constant across DEMs with the same topic. The number of samples and the offsets between samples also remain constant for a given DEM topic.

Figure 3.4.2.1.1.2-1 shows an example of three samples of the same parameter where each sample is 16 bits in length and the samples are separated by 32 bits. Other parameter data is permitted to occupy the bits between samples.

[image: image10.emf]A1

A3

A2

Start bit i

A is a 16 bit Multiple Sampled parameter where:

A1 is sample 1 at start bit i.

A2 is sample 2 at start bit i + length=16 + sample offset=32.

A3 is sample 3 at start bit i + 2*(length=16 + sample offset=32).

32

16 16 16

32

Figure 3.4.2.1.1.2-1 Multiple Sample Parameter Encapsulation

Figure 3.4.2.1.1.2-2 shows an example of a parameter with a Multiple Sample sampling type. In this example, multiple samples of the same parameter A appear in each instance of the mechanism data unit within a DEM data block. The parameter’s samples are separated by a fixed offset known as the sample offset.

[image: image11.emf]Multiple Sample Sampling where:

A is a 16 bit parameter located at start bit i, sample offset = 32.

A1

A3

A2

Start bit i

32

16 16 16

32

1

A1

A3

A2

Start bit i

32

16 16 16

32

2

A1

A3

A2

Start bit i

32

16 16 16

32

DEM Header

and Content

Map

3

DEM Header

and Content

Map

DEM Header

and Content

Map

Figure 3.4.2.1.1.2-2 Multiple Sample Sampling Type

3.4.2.2 Data Type Encoding

The data types represented in Table 3.4.2.2-1 describe how parameter values may be encoded within a command or telemetry message.

Table 3.4.2.2-1 Data Types
	Data Type
	Description
	Constraints

	Unsigned
	An unsigned integer
	Length must be between 1 and 64 bits inclusive

	Two’s Complement
	A signed integer
	The length must be between 2 and 64 bits inclusive

	IEEE Floating Point
	A floating point number as described in IEEE 754-1985
	Single precision is 32 bits. Double precision is 64 bits

Table 3.4.2.2-1 Data Types - Concluded

	Data Type
	Description
	Constraints

	UTF-8
	A string consisting of UTF-8 characters
	Length of data must be a multiple of 8 bits.

	UTF-16
	A string consisting of UTF-16 characters
	Length of data must be a multiple of 16 bits.

	Binary
	Undefined bit or byte data
	The length of the parameter must be between 1 and 64 bits or a multiple of 8 bits.

[C3I-1510] Constellation Systems shall use the encoding data types specified in Table 3.4.2.2-1 of Section 3.4.2.2 of this volume when encoding parameters within a mechanism data unit of a Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the standard data type encodings so that all data exchanged is interpreted the same.

[C3I-1511] Constellation Systems shall use the encoding data types specified in Table 3.4.2.2-1 of Section 3.4.2.2 of this volume when decoding parameters from a mechanism data unit of a Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the standard data type encodings so that all data exchanged is interpreted the same.

3.4.2.3 Byte Order

The byte order describes how the bytes of a parameter may be placed in a command or telemetry message. There are two common byte orders in use today: Big Endian and Little Endian. A parameter with Big Endian byte order has the most significant byte first and the least significant byte last. A parameter with Little Endian byte order has the least significant byte first and the most significant byte last. The bit order within a byte is always most significant bit first.

The example in Figure 3.4.2.3-1 shows the byte order for an 8 byte parameter for both Big Endian and Little Endian. Byte 1 is the most significant byte.
[image: image12.wmf]B

i

g

E

n

d

i

a

n

:

L

i

t

t

l

e

E

n

d

i

a

n

:

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

B

y

t

e

N

u

m

b

e

r

s

:

Figure 3.4.2.3-1 Byte Order Example

[C3I-1512] Constellation Systems shall use the Big Endian (most significant byte first) byte order when placing parameters within a mechanism data unit of a Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the same byte order so that all data exchanged is interpreted the same.

[C3I-1513] Constellation Systems shall use the Big Endian (most significant byte first) byte order when extracting parameters from a mechanism data unit of a Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the same byte order so that all data exchanged is interpreted the same.

3.4.2.4 Calibration

The following sections describe the different types of calibration that can be applied to a parameter. Calibration is the conversion between digitized discrete count representation of a physical phenomenon and that set of engineering units associated with the phenomenon; the direction of the conversion is dependent on the context. Calibrated values have traditionally been defined by terms such as “engineering units” and “raw counts” to describe either the input to the calibration function or the output from the calibration function. This section uses a more generic input value and output value to describe those values. The specific telemetry and command sections will use the terms “engineering units” and “encoded value” as needed to describe the intended input and output values. The “encoded value” is how the parameter appears in the Data Exchange Message. This section is intended to describe the mathematical side of calibration.

In addition to calibration as described in the preceding paragraph, the concept of inverse calibration also exists for Constellation. For this document the term inverse calibration is the mathematical reverse of calibration. If calibrated value (y) is determined by a mathematical formula using the uncalibrated value (x), then the inverse calibration is essentially solving for ‘x’ in terms of ‘y’.

[C3I-1514] Constellation Systems shall use the calibrations specified in Section 3.4.2.4 of this volume when calibrating parameters in a mechanism data unit of a Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the same calibrations so that all data exchanged is interpreted the same.

[C3I-1515] Constellation Systems shall use the calibrations specified in Section 3.4.2.4 of this volume when de-calibrating parameters from a mechanism data unit of a Data Exchange Message.

Rationale: For interoperability to occur, Constellation Systems need to adhere to the same calibrations so that all data exchanged is interpreted the same.

3.4.2.4.1 Polynomial Calibration

Polynomial calibration is the transformation of a parameter to another value using a polynomial equation. The input parameter is considered the uncalibrated value. The output is the calibrated value. Up to a 7th order polynomial is supported. The attributes are composed of exponent and coefficient pairs.

For instance, consider the following 4th order polynomial:

[image: image13.wmf]4

3

2

0025

.

0

25

.

1

045

.

0

5

.

1

5

.

0

x

x

x

x

y

+

+

-

+

=

This polynomial would be defined using the following attribute values:

	Exponent
	Coefficient

	0
	0.5

	1
	1.5

	2
	-0.045

	3
	1.25

	4
	0.0025

The polynomial would be applied to the input value (x) to derive the calibrated value (y).

3.4.2.4.2 Line Segment Calibration

Line segment calibration uses linear interpolation along a series of line segments to calculate a calibrated value. Extrapolation of data is not supported. The linear segments are each defined by a pair of points. Each point is defined by an uncalibrated Input Value and a calibrated Output Value. A parameter’s uncalibrated input value is compared to the defined point pairs, and the calibrated output value is determined by linear interpolation between a pair of points. The attributes are composed of input value and output value pairs.

At least two points must be specified to define a line segment, and up to 100 points are supported. However, the line segments must not be defined in such a way as to provide ambiguous results (e.g., an infinite slope is not allowed). To that end, the points are ordered by their unique Input Values to define the line segments of the calibrator.

For instance, consider the following series of line segments:

[image: image14.wmf]0

100

200

300

0

2

4

6

8

Input Value

Output Value

These line segments would be defined using the following attribute values:

	Input Value
	Output Value

	0
	0

	2.25
	50

	3.0
	200

	5.75
	255

For a given Input Value, the corresponding Output Value is interpolated using the two points between which the Input Value falls. For instance, using the values given above, the Output Value corresponding with an Input Value of 2.7 would be calculated as follows:

The Input Value of 2.7 falls between 2.25 and 3.0, for which the Output Values are known to be 50 and 200 respectively. Therefore, let:

	
[image: image15.wmf]50

25

.

2

1

1

=

=

Out

In

	
[image: image16.wmf]200

0

.

3

2

2

=

=

Out

In

Solve for the Output Value corresponding to 2.7 as follows:

[image: image17.wmf]140

)

25

.

2

7

.

2

(

25

.

2

0

.

3

50

200

50

)

(

1

1

2

1

2

1

=

-

-

-

+

=

-

-

-

+

=

Out

In

In

In

In

Out

Out

Out

Out

3.4.2.4.3 Enumeration Calibration

Enumeration calibration is the correlation of a text label to an unsigned integer value. The determination on whether the text label or unsigned integer value is the calibrated value is dependent on the context of its use. The unsigned integer must be 32 bits or less.

The text label is case-insensitive. Up to 256 Text Label/Value pairs are supported for a single enumeration calibrator. Given that there are more potential values than labels, it is left to each System to define the label to be used should an undefined value be received in the telemetry. Commands cannot be issued using undefined values.

3.4.2.5 Command and Telemetry Definition Files

[C3I-1413] Constellation Systems shall provide telemetry and command definition Input Products in an XTCE format according to the XTCE Required Practices in Appendix I.

Rationale: The XTCE specification provides formats for most telemetry and command data needed for Constellation system elements. For data outside the scope of XTCE, such things as electronic procedures and use of Constellation Systems displays in elements like crew trainers, additional XML schema will be developed. The XTCE Required Practices in Appendix I will guide the use of XTCE so that it is compatible with the Constellation Data Architecture through the use of Constellation identifiers, a controlled vocabulary, and restricted choices for representing certain structures. The XTCE specification is being studied for adoption by CCSDS (CCSDS 660.0-G-1, CCSDS 660.0-M-0.0, CCSDS 660.0-R-2).

[C3I-1538] Constellation Systems shall provide telemetry and command specification models in an ASN.1 format.
Rationale: ASN.1 is an implementation-neutral standard for describing data types and structures and their encodings that is widely adopted for realtime command and control across a broad range of industries. ASN.1 specifications are extensible, composable and reusable for telemetry and command definitions needed for Constellation system elements. The expressiveness and modularity of ASN.1 addresses a broad scope of applications including IPCL, electronic procedures, ground operation procedures, and interoperability with simulation and training facilities. Consistent use of ASN.1 is assured by automated transformations from the Constellation Data Architecture models and the use of Constellation identifiers, a controlled vocabulary, and explicit choices for representing information structures. ASN.1 is the basis for the specification of CCSDS Space Link Extensions (SLE) data types, information structures and protocols.

3.4.3 Command Metadata

The command metadata attributes presented in the following sections have been organized into tables consisting of related information. The organization of the tables in no way implies a design or architecture.

The tables are organized into the following columns:

a.
Attribute – a piece of information that needs to be defined in metadata, such as a parameter name or data type

b.
Description – descriptive information about the attribute

c.
Constraints – information that constrains or restricts the attribute in some way, such as restricting the valid values for the attribute

These attributes describe the information required by Constellation to process a command. Command processing includes checking the validity of user-provided parameter values, calibration of parameter values as needed to transform them from engineering units to the encoded value, conversion of parameter values from host data types to encoded data types, packing the parameters into a command packet for transmission, and checking command verifiers after transmitting a command.

3.4.3.1 Command Parameter Metadata

The following subsections specify the metadata required to describe the parameters that make up a command. All of the attributes in each of the tables in the following subsections should be associated with the same unique command parameter.

[C3I-1516] Constellation Systems shall use command parameter metadata as specified in Section 3.4.3.1 of this volume when building a single parameter of a command.

Rationale: This metadata covers all of the attributes required to describe the parameters that make up a command. This has also been referred to as all of the fields within a command. For interoperability to occur, Constellation Systems need to adhere to the same metadata definitions so that all data exchanged is interpreted the same.

3.4.3.1.1 Command Parameter Attributes

Table 3.4.3.1.1-1 specifies the general information required by Constellation to describe a single command parameter.

Table 3.4.3.1.1-1 Command Parameter Attributes

	Attribute
	Description
	Constraints

	Parameter Name
	The name of the command parameter
	The Compact Unique Identifier (CUI) that must be specified according to the Constellation Data Architecture Naming and Identifier Rules as defined in Appendix G

Required: always

	Description
	Descriptive text about the command parameter
	7-bit ASCII String

Maximum of 1024 characters in length

Required: optional

	Short Description
	Short descriptive text about the command parameter
	7-bit ASCII String

Maximum of 64 characters in length

Required: optional

	Data Type
	The data type of the parameter as encoded in the message
	One of the Data Type specifications as defined in Section J1.12.2.2
Required: always

Table 3.4.3.1.1-1 Command Parameter Attributes - Continued

	Attribute
	Description
	Constraints

	Parameter Length
	Length of the encoded parameter in bits
	Unsigned Integer

Length may be restricted based on data type

Required: always

	Byte Order
	The byte order of the parameter
	For Constellation Systems, the byte order is required to be Big Endian

Byte order is defined in Section J1.12.2.3
Required: optional

	Modifiable
	Indicates whether the parameter is modifiable by a user or system or the value is fixed.
	Must be one of the following:

user – parameter is modifiable by a user
system – parameter is modifiable by a (computer) system
fixed – parameter is not modifiable

If not specified, the parameter is assumed to be fixed
Required: optional

	Units
	Engineering units associated with the parameter’s engineering unit value
	Must be the QNAME of the Unit defined in Appendix F.

Required: optional

	Calibrator Type
	Type of calibration to be used on the parameter, if any
	Must be one of the C3I Calibration Types defined in Section J1.12.2.4
Required: optional

Table 3.4.3.1.1-1 Command Parameter Attributes - Continued

	Attribute
	Description
	Constraints

	Limit Type
	Determines if the Low Limit and High Limit are to be interpreted as the lower and upper bounds of valid or invalid data.

If the Limit Type is Inclusive, then any value between the Low Limit and High Limit is considered acceptable. Values below the Low Limit or above the High Limit would be considered invalid.

If the Limit Type is Exclusive, then any value between the Low Limit and High Limit is considered unacceptable. Values below the Low Limit or above the High Limit would be considered valid
	Must be one of the following:

Inclusive – specifies that the range of data between the low and high limit is valid.

Exclusive – specifies that the range of data between the low and high limit is invalid.

Default is Inclusive

Required: optional

	Low Limit
	The low limit value for the parameter. The Limit Type specifies whether Low Limit is considered to be the lowest allowed or disallowed value.

May be calibrated or uncalibrated (see Calibrated Limits attribute)
	The encoded form of the provided value must be consistent with the Data Type and Parameter Length specified for the parameter, as defined in this table.

Value is undefined for predefined parameters and optional for modifiable parameters.

Must be less than the High Limit.

Required: optional

	High Limit
	The high limit value for the parameter. The Limit Type specifies whether High Limit is considered to be the highest allowed or disallowed value.

May be calibrated or uncalibrated (see Calibrated Limits attribute)
	The encoded form of the provided value must be consistent with the Data Type and Parameter Length specified for the parameter, as defined in this table.

Value is undefined for predefined parameters and optional for modifiable parameters.

Must be greater than the Low Limit.

Required: optional

Table 3.4.3.1.1-1 Command Parameter Attributes - Concluded

	Attribute
	Description
	Constraints

	Encoded Value Limits
	Indicates whether the Low Limit and High Limit values are defined with respect to the encoded value or the engineering unit value.

For calibrated parameters, this attribute is needed to determine whether the comparison is to be made before or after calibration.

For non-calibrated parameters, there is no distinction and the field is not applicable
	Must be one of the following:

True – limit values are with respect to the encoded value, if applicable

False – limit values are with respect to the engineering unit value.

If not specified, value is assumed to be False.

Required: optional

3.4.3.1.2 Command Parameter Polynomial Calibrator Attributes

Table 3.4.3.1.2-1 specifies the information required by Constellation to calibrate a command parameter using a polynomial equation as described in Section J1.12.2.4.1. The attributes in this table are required when the command parameter attribute Calibrator Type indicates that polynomial calibration is to be applied to the parameter. For command parameters, the input value provided by the user (i.e., the uncalibrated value) is calibrated to get the value that will be transmitted in the command packet (i.e., the calibrated value). The input value provided by the user is considered the engineering units value and the output of the polynomial calibration is the encoded value.

Table 3.4.3.1.2-1 Command Parameter Polynomial Calibrator Attributes

	Attribute
	Description
	Constraints

	Exponent
	The exponent applied to the input value to which the following coefficient is associated
	Integer List.

Maximum of 8 elements. Exponent value in the list must be unique.

Minimum value: 0,

Maximum value: 7.

Required: For calibrator type of Polynomial Calibrator

	Coefficient
	The polynomial coefficient applied to the input value to which the exponent above is associated
	Double precision List. Maximum of 8 elements. Number of elements must match that of the Exponent list.

Required: For calibrator type of Polynomial Calibrator

3.4.3.1.3 Command Parameter Inverse Polynomial Calibrator Attributes

Table 3.4.3.1.3-1 defines the information required by Constellation to perform inverse calibration of a command parameter using a polynomial equation as described in section J1.12.2.4.1. The attributes in this table are required when the command parameter attribute Calibrator Type indicates that polynomial calibration is to be applied to the parameter. For command parameters, the Input Value for inverse calibration is the encoded value transmitted in the command packet. The Output Value is considered the engineering units value.

Table 3.4.3.1.3-1 Command Parameter INVERSE Polynomial Calibrator Attributes

	Attribute
	Description
	Constraints

	Exponent
	The exponent applied to the input value to which the following coefficient is associated.
	Integer List.

Maximum of 8 elements. Exponent value in the list must be unique.

Minimum value: 0,

Maximum value: 7.

Required: For calibrator type of Polynomial Calibrator

	Coefficient
	The polynomial coefficient applied to the input value to which the exponent above is associated.
	Double precision List. Maximum of 8 elements. Number of elements must match that of the Exponent list.

Required: For calibrator type of Polynomial Calibrator

3.4.3.1.4 Command Parameter Line-Segment Calibrator Attributes

Table 3.4.3.1.4-1 specifies the information required by Constellation to calibrate a command parameter using linear interpolation as described in Section J1.12.2.4.2. The attributes in this table are required when the command parameter attribute Calibrator Type indicates that line-segment calibration is to be applied to the parameter. For command parameters, the input value provided by the user (i.e., the uncalibrated value) is calibrated to get the value that will be transmitted in the command packet (i.e., the calibrated value). The Input Value is considered the engineering units value and the Output Value is the encoded value.

Table 3.4.3.1.4-1 Command Parameter Line-Segment Calibrator Attributes

	Attribute
	Description
	Constraints

	Input Value
	Uncalibrated value
	Numeric List. Maximum of 100 elements. Each element value must be unique.

Required: For calibrator type of Line Segment Calibrator

	Output Value
	Calibrated value
	Numeric List. Maximum of 100 elements. The number of elements must match that of the Input Value list.

The encoded form of the Output Value must be consistent with the Data Type and Length specified for the Parameter.

Required: For calibrator type of Line Segment Calibrator

3.4.3.1.5 Command Parameter Inverse Line-Segment Calibrator Attributes
Table 3.4.3.1.5-1 defines the information required by Constellation to perform inverse calibration of a command parameter using linear interpolation as described in section J1.12.2.4.2. The attributes in this table are required when the command parameter attribute Calibrator Type indicates that line-segment calibration is to be applied to the parameter. For command parameters, the input value for inverse calibration is the encoded value transmitted in the command packet. The output value is considered the engineering units value.

Table 3.4.3.1.5-1 Command Parameter INVERSE Line-Segment Calibrator Attributes

	Attribute
	Description
	Constraints

	Input Value
	Uncalibrated value.
	Numeric List. Maximum of 100 elements. Each element value must be unique.

The encoded form of the Input Value must be consistent with the Data Type and Length specified for the Parameter.

Required: For calibrator type of Line Segment Calibrator

	Output Value
	Calibrated value
	Numeric List. Maximum of 100 elements. The number of elements must match that of the Input Value list.

Required: For calibrator type of Line Segment Calibrator

3.4.3.1.6 Command Parameter Enumeration Calibrator Attributes

Table 3.4.3.1.6-1 specifies the information required by Constellation to calibrate a command parameter from an Enumeration Label to an unsigned integer Value. The attributes in this table are required when the command parameter attribute Calibrator Type indicates that enumeration calibration is to be applied to the parameter. For command parameters, the input value provided by the user (i.e., the uncalibrated, engineering unit value) is calibrated to get the value that will be transmitted in the command packet (i.e., the calibrated, encoded value).

Table 3.4.3.1.6-1 Command Parameter Enumeration Calibrator Attributes

	Attribute
	Description
	Constraints

	Enumeration Label
	Text string used to represent the associated Value
	7-bit ASCII String List

Each Enumeration Label is case-insensitive and must be unique for a given parameter.

Each element can be a maximum of 100 characters in length.

Maximum of 256 elements. Number of elements must match that of the Value list.

Required: For calibrator type of Enumeration Calibrator

	Value
	Value represented by the associated Enumeration Label
	Unsigned Integer List

Maximum of 256 elements. Each element value must be unique.

Required: For calibrator type of Enumeration Calibrator

3.4.3.2 Command Packing Metadata

Table 3.4.3.2-1 specifies the information required by Constellation to describe a command packing structure. For each command packing structure, the names of the command parameters (Parameter Name) within the structure are specified, along with their positions (Start Bit) within the structure. The parameters themselves are defined by the Command Parameter Attributes, as specified in Section J1.12.3.1.1. The command packing structure must be defined such that parameters within the structure do not overlap and there are no gaps between parameters (i.e., each bit is set by one, and only one, parameter). Note that the specification does not preclude multiple command instances (see Section 3.4.3.3) using the same command packing structure.

[C3I-1517] Constellation Systems shall use command packing metadata as specified in Section 3.4.3.2 of this volume when placing the parameters that make up a command into a mechanism data unit within a Command Data Exchange Message.

Rationale: This metadata covers all of the attributes required to describe the way the individual command parameters are packed into the command. For interoperability to occur, Constellation Systems need to adhere to the same metadata packing definitions so that all data exchanged is interpreted the same.

[C3I-1518] Constellation Systems shall use command-packing metadata as specified in Section 3.4.3.2 of this volume when unpacking the parameters that make up a command from a mechanism data unit within a Command Data Exchange Message.

Rationale: This metadata covers all of the attributes required to describe the way the individual command parameters are packed into the command mechanism data unit of the Command DEM. For interoperability to occur, Constellation Systems need to adhere to the same metadata packing definitions so that all data exchanged is interpreted the same.

Table 3.4.3.2-1 Command Packing Attributes

	Attribute
	Description
	Constraints

	Packing Structure Name
	The name of the command packing structure
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Required: always

	Parameter Name
	The name of the command parameter
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Note that multiple parameters may be (and normally will be) defined within a given structure along with the corresponding start bit.

Required: always

Table 3.4.3.2-1 Command Packing Attributes - Concluded

	Attribute
	Description
	Constraints

	Start Bit
	The bit within the command structure where the parameter begins. The first bit of the command structure is designated as bit 0
	Unsigned Integer

For a given Packing Structure Name, each Start Bit value must be unique.

Restricted to the maximum number of bits in a command minus 1.

Must be defined such that parameters within a given structure do not overlap and there are no gaps between parameters.

Required: always

3.4.3.3 Command Instance Metadata

The following subsections specify the metadata required to describe a command instance. All of the attributes in each of the tables in the following subsections should be associated with the same unique command instance.

[C3I-1519] Constellation Systems shall use command instance metadata as specified in Section 3.4.3.3 of this volume when building an instance of a command.

Rationale: This metadata covers all of the attributes required to describe a unique command instance. For interoperability to occur, Constellation Systems need to adhere to the same metadata definitions so that all data exchanged is interpreted the same.

3.4.3.3.1 Command Instance Attributes

Table 3.4.3.3.1-1 specifies the general information required by Constellation to describe a single command instance.

Table 3.4.3.3.1-1 Command Instance Attributes

	Attribute
	Description
	Constraints

	Command Name
	The name of the command
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Required: always

	System
	The Constellation System that identifies the Data Exchange Message (DEM) in which the command resides
	Unsigned Integer.

Valid values will be identified in the Constellation System of Registries.

Required: always

Table 3.4.3.3.1-1 Command Instance Attributes - Concluded

	Attribute
	Description
	Constraints

	Type
	Identifies the specific message type of the DEM in which the command resides
	Type value is always 1 (commanding)

Required: always

	Content ID
	Uniquely identifies the command’s content identifier within the System
	Unsigned Integer between 1 and 65534 inclusive.

Required: always

	Content Map ID
	Identifies the map to use when building or extracting data from the command.
	Binary data from 1-15 bytes represented as hexadecimal.

Required: always

	Description
	Descriptive text about the command
	7-bit ASCII String

Maximum of 1024 characters in length

Required: optional

	Short Description
	Short descriptive text about the command
	7-bit ASCII String

Maximum of 64 characters in length

Required: optional

	Access Group
	A name that can be used to provide access rights to all commands within the Access Group
	Required: always

	Packing Structure Name
	The name of the command packing structure to be used for the command instance
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Reference Section 3.4.3.2.

Required: always

3.4.3.3.2 Command Instance Parameter Attributes

Table 3.4.3.3.2-1 specifies the information required by Constellation to describe the instance-specific parameter attributes for a command instance. This information consists of the name of each parameter in the command for which a fixed or default value needs to be specified and the associated value.

Table 3.4.3.3.2-1 Command Instance Parameter Attributes

	Attribute
	Description
	Constraints

	Parameter Name
	The name of the command parameter
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Parameter Name must be provided for each predefined parameter in the command.

Parameter Name must be provided for a modifiable parameter only if a default value is being defined for the parameter.

Note that multiple parameters may be specified for a given command instance.

Required: always

	Value
	For a predefined parameter, this is the fixed value.

For a modifiable parameter, this is the default value (if any).

If calibration is associated with the parameter, the given value must be the uncalibrated, engineering unit value
	Value must be provided for each predefined parameter in the command.

Value must be provided for a modifiable parameter only if a default Value is being defined for the parameter.

Value is required for each given Parameter Name.

The encoded form of the provided value must be consistent with the Data Type and Length specified for the parameter, as defined in section J1.12.3.1.1.

Required: always

3.4.3.3.3 Command Verifier Attributes

Table 3.4.3.3.3-1 specifies the information required by Constellation to verify the successful execution of a command. This includes each telemetry parameter used for verification and the expected value of each parameter. The specified comparison must resolve to true for positive verification of the command’s execution. If multiple verifiers are defined for a single command, all comparisons must resolve to true for positive verification of the command’s execution.

Table 3.4.3.3.3-1 Command Verifier Attributes

	Attribute
	Description
	Constraints

	Verifier Parameter
	The name of the telemetry parameter to be checked to verify the successful execution of the command
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Multiple verifier parameters may be specified for a given command instance.

Required: always

	Value Is Encoded
	Indicates whether the Verifier Parameter value provided is the encoded value or engineering unit value
	Must be one of the following:

True – Value is encoded. Comparison made on uncalibrated parameter value

False – Value is engineering units. Comparison made on calibrated parameter value

If not specified, value is assumed to be False.

Required: optional

	Comparison Operator
	Operator to be used for the comparison
	Must be one of the following operators:

==
- equal to

!=
- not equal to

<
- less than

<=
- less than or equal to

>
- greater than

>=
- greater than or equal to

Required: always

	Value
	Value to which the Verifier Parameter value is compared
	The encoded form of the value must be consistent with the Data Type specified for the telemetry parameter, as defined in Section 3.4.4.2.

Required: always

	Timeout
	Number of seconds after sending the command to continue checking the telemetry parameter for a positive verification
	Double

The value must be greater than 0.

Required: always

3.4.3.4 Command Sequence Metadata

The following subsections specify the metadata required to describe a command sequence. All of the attributes in each of the tables in the following subsections should be associated with the same unique command sequence.

[C3I-1520] Constellation Systems shall use command sequence metadata as specified in Section 3.4.3.4 of this volume when building a unique command sequence.

Rationale: This metadata covers all of the attributes required to describe a unique command sequence. For interoperability to occur, Constellation Systems need to adhere to the same metadata definitions so that all data exchanged is interpreted the same.

3.4.3.4.1 Command Sequence Attributes

Table 3.4.3.4.1-1 specifies the information required by Constellation to describe a command sequence. For each command sequence, the names of the commands within the sequence (Command Name) are specified, along with their positions within the sequence (Sequence Number). The commands themselves are defined by the Command Instance Metadata, as specified in Section 3.4.3.3.

Note that the specification does not preclude multiple occurrences of a single command within a sequence, nor does it imply whether the commands of a sequence are transmitted as individual commands or as a single block/packet containing multiple commands.

Table 3.4.3.4.1-1 Command Sequence Attributes

	Attribute
	Description
	Constraints

	Sequence Name
	The name of the command sequence
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Required: always

	Sequence Number
	Number indicating the order of the commands within the sequence
	Unsigned Integer

Multiple commands may be specified for a given command sequence.

Each Sequence Number value for a given command sequence must be unique.

Sequence Number values for a given Sequence Name must begin at 1 and be incremented by 1 for each command in the sequence.

Required: always

Table 3.4.3.4.1-1 Command Sequence Attributes - Concluded

	Attribute
	Description
	Constraints

	Command Name
	The name of the command
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Multiple commands may be specified for a given command sequence.

A single command may occur more than once in a given command sequence.

Required: always

3.4.3.4.2 Command Sequence Parameter Attributes

Table 3.4.3.4.2-1 specifies the information required by Constellation to describe the sequence-specific parameter attributes for a command instance within a sequence. This information consists of the name of each modifiable parameter for the command instance and the associated value for the modifiable parameter. These attributes should be associated with a single occurrence of a command within the sequence, as described by the Command Sequence Attributes in Section J1.12.3.4.1 (i.e., if a single command appears in the sequence more than once, then parameter values must be defined independently for each occurrence of the command).

Table 3.4.3.4.2-1 Command Sequence Parameter Attributes

	Attribute
	Description
	Constraints

	Parameter Name
	The name of the modifiable command parameter
	Must be specified according to the Constellation Data Architecture Naming and Identifier Rules defined in Appendix G.

Parameter Name must be provided for each modifiable parameter in the command (reference Modifiable attribute in Section J1.12.3.1.1).

Required: always

	Value
	Data value to be assigned to the associated command parameter for this command occurrence within the command sequence.

If calibration is associated with the parameter, the given value must be the uncalibrated, engineering unit value
	For non-calibrated parameters the encoded form of the provided value must be consistent with the Data Type and Parameter Length specified for the parameter, as defined in Section J1.12.3.1.1.

Required: always

3.4.4 Telemetry Metadata

The parameter attributes presented in the following sections have been organized into tables consisting of related information. The organization of the tables that follow in no way implies a design or architecture. All of the attributes in each of the tables should be associated with the same unique parameter.

The following subsections define the metadata required to describe the parameters that make up a telemetry parameter.

The tables are organized into the following columns:

a.
Attribute – a piece of information that needs to be defined in metadata, such as a parameter name or data type

b.
Description – descriptive information about the attribute

c.
Constraints – information that constrains or restricts the attribute in some way, such as restricting the valid values for the attribute

These attributes contain general information required by Constellation to process the parameter. Parameter processing includes extraction from the packet, conversion from an encoded data type to a host data type, calibration of the data as needed to transform the encoded value to engineering units, and checking the parameter value for alarm violations.

3.4.4.1 Telemetry Stream Attributes

The Telemetry Stream Attributes describe the information associated with a collection of parameters encoded in a mechanism data unit. This includes the necessary data for identification of Data Exchange Messages (System, Type, and Content ID) as well as rate information (Nominal Expected Stream Rate and Maximum Expected Stream Rate). The rate information should be considered estimates.

[C3I-1521] Constellation Systems shall use telemetry stream attributes as specified in Section 3.4.4.1 of this volume when building a telemetry stream.

Rationale: This metadata covers all of the attributes required to describe a single telemetry stream. This includes the information necessary for identification of the DEMs, as well as rate information. For interoperability to occur, Constellation Systems need to adhere to the same metadata definitions so that all data exchanged is interpreted the same.
Table 3.4.4.1-1 Telemetry Stream Attributes

	Attribute
	Description
	Constraints

	System
	Identifies the Constellation System of the DEM
	Unsigned Integer

Valid values will be identified in the Constellation System of Registries

Required: always

	Type
	Identifies the specific message type of the DEM
	Type value is always 2 (telemetry)

Required: always

	Content ID
	Identifies the specific content identifier of the DEM
	Unsigned Integer between 1 and 65534 inclusive

Required: always

	Content Map ID
	Identifies the map to use when building or extracting data from the command.
	Binary data from 1-15 bytes represented as hexadecimal.

Required: always

	Description
	Descriptive text about the telemetry stream
	7 bit ASCII String

Maximum of 1024 characters in length

Required: optional

	Short Description
	A short (less than 64 characters) description of the telemetry stream
	7 bit ASCII String

Maximum of 64 characters in length

Required: optional

	Nominal Expected Stream Rate
	The nominal number of instances expected for this stream per second
	Double precision

Required: always

	Maximum Expected Stream Rate
	The maximum number of instances expected for this stream per second. This number is an estimate, but may be used by Systems to initialize buffers for high rate data
	Double precision

Required: always

3.4.4.2 Telemetry Parameter Attributes

The Telemetry Parameter Attributes identify a parameter’s Name used to uniquely identify the telemetry parameter within the Constellation Registry. An optional Description and Short Description can be used to provide text to describe the purpose of the parameter or identify the parameter’s technical name. The Data Type and Parameter Length define how the parameter is encoded within a mechanism data unit. A parameter’s encoded data type can be a type of integer, floating point, string, binary, or time. Valid parameter data types are listed in Section J1.12.2.2. The Byte Order of the parameter indicates the order of the bytes of the encoded data. An optional Units attribute can be used to describe the type of Units of Measure related to the parameters sample values. The Units represent a valid C3I Units QNAME listed in Appendix F. If calibration is to be performed on a parameter, the Calibrator Type will indicate the type of calibration algorithm to apply to the parameter. The three calibrator types supported in Constellation are: Polynomial Calibrator, Line-Segment Calibrator, and Enumeration Calibrator. Depending on the Calibrator Type, additional attributes specified in one of the Calibrator attributes tables that follow will need to be identified.

[C3I-1522] Constellation Systems shall use telemetry parameter attributes as specified in Section 3.4.4.2 of this volume when building a single telemetry parameter measurement.

Rationale: This metadata covers all of the attributes required to describe a single telemetry measurement. For interoperability to occur, Constellation Systems need to adhere to the same metadata definitions so that all data exchanged is interpreted the same.

Table 3.4.4.2-1 Telemetry Parameter Attributes
	Attribute
	Description
	Constraints

	Name
	The name of the parameter
	This is the Compact Unique Identifier (CUI) that must be specified according to the Appendix G.

Required: always

	Description
	Descriptive text about the parameter
	7 bit ASCII String

Maximum of 1024 characters in length

Required: optional

	Short Description
	A short (less than 64 characters) description of the parameter
	7 bit ASCII String

Maximum of 64 characters in length

Required: optional

	Data Type
	One of the C3I Data type specifications. Identifies the sample value encoding within a Data Exchange Message DEM
	See Section J1.12.2.2, data type encoding for a list of valid data types

Required: always

	Parameter Length
	The encoded parameter length in bits
	Unsigned Integer

Length is restricted based on data type

Required: always

	Byte Order
	Indicates the byte order of the parameter samples
	See Section J1.12.2.3, for a list of valid byte orders.

For Constellation Systems, the byte order is required to be Big Endian.

Required: optional

	Units
	Engineering units associated with the parameter’s engineering unit value
	Must be the QNAME of the Unit defined in Appendix F.

Required: optional

	Low Encoded Value Limit
	Defines the minimum expected value for the encoded value
	The provided value must be consistent with the Data Type and Length specified for the parameter, as defined in Section J1.12.3.1.1.

Required: optional

Table 3.4.4.2-1 Telemetry Parameter Attributes - Concluded
	Attribute
	Description
	Constraints

	High Encoded Value Limit
	Defines the maximum expected value for the encoded value
	The provided value must be consistent with the Data Type and Length specified for the parameter, as defined in Section J1.12.3.1.1.

Required: optional

	Access Group
	A name that can be used to provide access rights to telemetry parameters. If Confidential Data is False, then no access limitation is implied and the Access Group is for informational purposes only
	Required: optional (must be provided if Confidential Data is True)

	Confidential Data
	Indicates if the parameter and all associated metadata are considered confidential
	Must be one of the following:

True – the parameter is considered confidential and access is limited to the Access Group.

False –access to parameter is not restricted

If not specified, value is assumed to be False.

Required: optional

	Calibrator Type
	One of the C3I Calibrator Types: Polynomial, Line Segment or Enumeration
	See Section J1.12.2.4 for a list of valid Calibrator Types.

Required: optional

3.4.4.3 Parameter Sampling Attributes

The Parameter Sampling Attributes Table contains the information needed to describe the arrangement of the parameter within the mechanism data unit. Each DEM is uniquely identified by the System, Type, and Instance attributes and a parameter has a specific arrangement within the mechanism data unit. The Parameter Sampling Attributes Table contains the attributes required by all parameters in addition to parameter attributes that are only required depending on a specific sampling type definition.

[C3I-1523] Constellation Systems shall use telemetry sampling attribute metadata as specified in Section 3.4.4.3 of this volume when placing a telemetry parameter into a mechanism data unit within a Telemetry Data Exchange Message.

Rationale: This metadata covers all of the attributes required to describe the way the individual telemetry parameters are packed into the mechanism data unit. For interoperability to occur, Constellation Systems need to adhere to the same metadata packing definitions so that all data exchanged is interpreted the same.

[C3I-1524] Constellation Systems shall use telemetry sampling attribute metadata as specified in Section 3.4.4.3 of this volume when extracting a telemetry parameter from a mechanism data unit within a Telemetry Data Exchange Message.

Rationale: This metadata covers all of the attributes required to describe the way the individual telemetry parameters are packed into the mechanism data unit. For interoperability to occur, Constellation Systems need to adhere to the same metadata packing definitions so that all data exchanged is interpreted the same.

Table 3.4.4.3-1 Parameter Sampling Attributes

	Attribute
	Description
	Constraints

	System
	The Constellation System that identifies the DEM to which the parameter resides
	Unsigned Integer

Valid values will be identified in the Constellation System of Registries.

Required: always

	Type
	Identifies the specific message type of the DEM to which the parameter resides
	Type value is always 2 (telemetry)

Required: always

	Content ID
	Identifies the specific content identifier of the DEM to which the parameter resides
	Unsigned Integer between 1 and 65534 inclusive

Required: always

	Content Map ID
	Identifies the map to use when building or extracting data from the command.
	Binary data from 1-15 bytes represented as hexadecimal.

Required: always

	Start Bit
	Indicates the start bit location of the parameter’s first sample relative to the end of the Content Map ID. The first bit is considered bit 0
	Unsigned Integer

Required: always

	Number of Samples
	Number of samples of this parameter embedded in each DEM packet
	Unsigned Integer

Required: Always

	Sample Offset
	Offset in bits to the next occurrence of a sample (from the end of the previous sample to the beginning of the next sample)
	Unsigned Integer

Required: For sampling types of Multiple Sample

3.4.4.4 Context Switch Attributes

The Context Switch Attributes contain information required to switch among different sets of calibration or alarm attributes. The Switch Parameter’s value is checked to determine which set of information for the calibrator or alarm to use.

The encoded value of the Switch Parameter is always used for the comparison even if the Switch Parameter has calibration information defined. Each “set” of calibration or alarm information is defined by a Set Number. If all of the comparisons for a Set Number evaluate to true, then that set is used for calibration or alarm checks.
Table 3.4.4.4-1 Context switch Attributes

	Attribute
	Description
	Constraints

	Switch Parameter
	The parameter to check for set selection. All comparisons must evaluate to true for the set to be selected. Checks are to be performed in numerical order and the first set that matches is used.
	String

Switch Parameter must be available in same telemetry stream.

Switch Parameter must be sampled at the same rate as the parameter whose calibrations/alarms are being switched.
Required: When more than one set is defined.

	Set Number
	The Set Number differentiates multiple calibration sets. The Set Number provides a link between the calibration sets and the context switches described by the attributes in this table.
	Unsigned Integer List.

Required: When more than one set is defined.

	Comparison Operator
	Operator for the comparison.
	List for each Set Number.

Must be one of the following operators:

==
- equal to

!=
- not equal to

<
- less than

<=
- less than or equal to

>
- greater than

>=
- greater than or equal to

Required: When more than one set is defined.

	Value
	The parameter value for the comparison.
	List for each Set Number.
The encoded form of the value must be consistent with the encoded Data Type specified for the Switch Parameter, as defined in section 0.
Required: When more than one set is defined.

3.4.4.5 Telemetry Parameter Polynomial Calibrator Attributes

The Telemetry Parameter Polynomial Calibrator Attributes contain information required to calibrate a Parameter using a polynomial equation as described in Section J1.12.2.4.1. Constellation requirements for the use of these calibrator attributes are in Section 3.4.2.4. The attributes in this table are required when the parameter measurement attribute Calibrator Type indicates that polynomial calibration is to be applied to the parameter. The Polynomial Equation that these attributes define will convert the parameter’s encoded value to engineering units. Both the Exponent and Coefficient attributes are lists of attributes in which each element of the list defines a specific monomial that is associated with the polynomial equation they define. For example, if the first element of the Exponent list has the value 2 and the first element of the Coefficient list has the value 8.2, then those elements define the monomial 8.2x2 and represent the 2nd degree monomial associated with the polynomial equation being defined. Polynomial Calibrators can only be applied to parameters with an Integer or Floating Point data type.

Table 3.4.4.5-1 Telemetry Parameter Polynomial Calibrator Attributes

	Attribute
	Description
	Constraints

	Set Number
	The Set Number differentiates multiple calibration sets. The Set Number provides a link between the calibration sets and the context switches described in Section 3.4.4.4.
	Unsigned Integer List.

Required: Optional unless more than one set defined.

	Exponent
	The exponent applied to the encoded value to which the corresponding Coefficient attribute is associated. There will be one exponent element associated with each monomial of the polynomial equation being defined
	Integer List for each Set Number.
Maximum of 8 elements. Exponent value in the list must be unique

Minimum value: 0

Maximum value: 7

Required: For calibrator type of Polynomial Calibrator

	Coefficient
	The polynomial coefficient applied to the encoded value to which the corresponding Exponent attribute is associated. There will be one element of the coefficient associated with each monomial of the polynomial equation being defined
	Double precision List for each Set Number. Maximum of 8 elements. Number of elements must match that of the Exponent list.

Required: For calibrator type of Polynomial Calibrator

3.4.4.6 Telemetry Parameter Inverse Polynomial Calibrator Attributes

The Telemetry Parameter Inverse Polynomial Calibrator Attributes define the information required by Constellation to perform inverse calibration of a telemetry parameter using a polynomial equation as described in section J1.12.2.4.1. The attributes in this table are required when the telemetry parameter attribute Calibrator Type indicates that polynomial calibration is to be applied to the parameter. For telemetry parameters, the Input Value for inverse calibration is considered the engineering units value. The Output Value is the encoding value transmitted in the packet.

Table 3.4.4.6-1 Telemetry Parameter INVErse Polynomial Calibrator Attributes

	Attribute
	Description
	Constraints

	Set Number
	The Set Number differentiates multiple inverse calibration sets. The Set Number provides a link between the calibration sets and the context switches described in Section J1.12.4.4.
	Unsigned Integer List.

Required: Optional unless more than one set defined.

The same number of sets must be defined for the inverse polynomial calibrator as defined for the polynomial calibrator in Table 3.4.4.5-1.

	Exponent
	The exponent applied to the engineering unit value to which the corresponding Coefficient attribute is associated. There will be one exponent element associated with each monomial of the polynomial equation being defined.
	Integer List for each Set Number.

Maximum of 8 elements. Exponent value in the list must be unique.

Minimum value: 0,

Maximum value: 7.

Required: For calibrator type of Polynomial Calibrator

	Coefficient
	The polynomial coefficient applied to the engineering unit value to which the corresponding Exponent attribute is associated. There will be one element of the coefficient associated with each monomial of the polynomial equation being defined.
	Double precision List for each Set Number. Maximum of 8 elements. Number of elements must match that of the Exponent list.

Required: For calibrator type of Polynomial Calibrator

3.4.4.7 Telemetry Parameter Line Segment Calibrator Attributes

The Telemetry Parameter Line-Segment Calibrator Attributes contain information required to calibrate a parameter using a series of linear segments as defined in Section J1.12.2.4.2. Constellation requirements for the use of these calibrator attributes are in Section 3.4.2.4. These attributes are required when the parameter measurement attribute Calibrator Type indicates that line segment calibration is to be applied to this parameter. Line Segment calibrators can only be applied to a parameter with an integer or floating point data type. The Input Value is the encoded value from the telemetry message and the Output Value is the engineering units value.

Table 3.4.4.7-1 Telemetry Parameter Line-Segment Calibrator Attributes

	Attribute
	Description
	Constraints

	Set Number
	The Set Number differentiates multiple calibration sets. The Set Number provides a link between the calibration sets and the context switches described in Section 3.4.4.4.
	Unsigned Integer List.

Required: Optional unless more than one set defined.

	Input Value
	Input value that corresponds to an Output Value. The input and output values represent a point pair associated with the Line segment. There will be one Input Value element defined for each Output Value element
	Numeric List for each Set Number. Maximum of 100 elements. Each element value must be unique.

Required: For calibrator type of Line Segment Calibrator

	Output Value
	Calibrated value that corresponds to an Input Value. There will be one Output Value element defined for each Input Value element
	Double Precision List for each Set Number. Maximum of 100 elements. The number of elements must match that of the Input Value List.

Required: For calibrator type of Line Segment Calibrator

3.4.4.8 Telemetry Parameter Inverse Line Segment Calibrator Attributes

The Telemetry Parameter Inverse Line Segment Attributes define the information required by Constellation to perform inverse calibration of a telemetry parameter using a series of linear segments as described in section J1.12.2.4.2. The attributes in this table are required when the telemetry parameter attribute Calibrator Type indicates that line segment calibration is to be applied to the parameter. For telemetry parameters, the Input Value for inverse calibration is considered the engineering units value. The Output Value is the encoding value transmitted in the packet.

Table 3.4.4.8-1 Telemetry Parameter INVERSE Line-Segment Calibrator Attributes

	Attribute
	Description
	Constraints

	Set Number
	The Set Number differentiates multiple inverse calibration sets. The Set Number provides a link between the calibration sets and the context switches described in Section J1.12.4.4.
	Unsigned Integer List.

Required: Optional unless more than one set defined.

The same number of sets must be defined for the inverse line-segment calibrator as defined for the line-segment calibrator in Table 3.4.4.7-1.

	Input Value
	Input value that corresponds to an Output Value. The input and output values represent a point pair associated with the Line segment. There will be one Input Value element defined for each Output Value element.
	Numeric List for each Set Number. Maximum of 100 elements. Each element value must be unique.

Required: For calibrator type of Line Segment Calibrator

	Output Value
	Calibrated value that corresponds to an Input Value. There will be one Output Value element defined for each Input Value element.
	Double Precision List for each Set Number. Maximum of 100 elements. The number of elements must match that of the Input Value List.

Required: For calibrator type of Line Segment Calibrator

3.4.4.9 Telemetry Parameter Enumeration Calibrator Attributes

The Telemetry Parameter Enumeration Calibrator Attributes contain information required to calibrate a parameter from a value to an enumeration label as defined in Section J1.12.2.4.3. Constellation requirements for the use of these calibrator attributes are in Section J1.12.2.4. These attributes are required when the parameter measurement attribute Calibrator Type indicates that enumeration calibration is to be applied to the parameter. There is no restriction on assigning the same enumeration label to different values. However, the same value cannot be assigned to different enumeration labels. Enumeration Calibrators can only be applied to parameters with an Unsigned Integer data type.

Table 3.4.4.9-1 Telemetry Parameter Enumeration Calibrator Attributes

	Attribute
	Description
	Constraints

	Value
	Value associated with an enumeration label attribute. There will be one Value element associated with each Enumeration Label element
	Unsigned Integer List

Maximum of 256 elements. Each element value must be unique.

Required: For calibrator type of Enumeration Calibrator

	Enumeration Label
	Enumeration label associated with the parameter Value
	7 bit ASCII String List

Each element can be a maximum of 100 characters in length.

Maximum of 256 elements. Number of elements must match that of the Value list.

Required: For calibrator type of Enumeration Calibrator

3.4.4.10 Telemetry Parameter Alarms

Three types of Alarms can be associated with a parameter. The alarm types are: Static Alarms, Change Alarms, and Enumeration Alarms. If any of these Alarm conditions are defined for a parameter, attributes from the Static Alarm Attributes Table, the Change Alarm Attributes Table, or the Enumeration Alarm Attributes Table will need to be identified. It should be noted that Static Alarms or Enumeration Alarms are mutually exclusive and can only be applied to parameters of a corresponding type. However, Change Alarms can be used in addition to Static Alarms.

[C3I-1525] Constellation Systems shall define alarm attributes, as specified in Section 3.4.4.7 of this volume, for a telemetry parameter measurement for monitoring of limit violations.

Rationale: This metadata covers all of the attributes required to determine if a parameter value violates a set of static caution or warning limits.

3.4.4.10.1 Static Alarm Attributes

The Parameter Static Alarm Attributes contain information required to determine if a parameter value violates one of four sets of limits. Parameters are not required to contain all of the limits. If a parameter does not have any calibrators defined then the static alarm limits will be applied to the parameter’s encoded value. If a polynomial or line segment calibrator is defined for a parameter then the static alarm limits will be applied to the parameter’s calibrated value. Static alarms are not permitted for enumerated values.

For parameters with a Limit Type of Inclusive, the following applies. If a parameter’s value is less than or equal to the Advisory Low Limit and greater than the Caution Low Limit, then an Advisory Alarm Violation occurs. If a parameter’s value is less than or equal to the Caution Low Limit and greater than the Warning Low Limit, then a Caution Alarm Violation occurs. If the parameter’s value is less than or equal to the Warning Low Limit and greater than the Emergency Low Limit, then a Warning Alarm Violation occurs. If the parameter’s value is less than or equal to the Emergency Low Limit, then an Emergency Alarm Violation occurs. If the parameter’s value is greater than or equal to the Advisory High Limit and less than the Caution High Limit, then an Advisory Alarm Violation occurs. If the parameter’s value is greater than or equal to the Caution High Limit and less than the Warning High Limit, then a Caution Alarm Violation occurs. If the parameter’s value is greater than or equal to the Warning High Limit and less than the Emergency High Limit, then a Warning Alarm Violation occurs. If the parameter’s value is greater than or equal to the Emergency High Limit, then an Emergency Alarm Violation occurs.

For parameters with a Limit Type of Exclusive the following applies. If a parameter’s value is greater than or equal to the Advisory Low Limit and less than the Caution Low Limit, then an Advisory Alarm Violation occurs. If a parameter’s value is greater than or equal to the Caution Low Limit and less than the Warning Low Limit, then a Caution Alarm Violation occurs. If a parameter’s value is greater than or equal to the Warning Low Limit and less than the Emergency Low Limit, then a Warning Alarm Violation occurs. If a parameter’s value is greater than or equal to the Emergency Low Limit and less than the Emergency High Limit, then an Emergency Alarm Violation occurs. If a parameter’s value is greater than or equal to the Emergency High Limit and less than the Warning High Limit, then a Warning Alarm Violation occurs. If a parameter’s value is greater than or equal to the Warning High Limit and less than the Caution High Limit, then a Caution Alarm Violation occurs. If a parameter’s value is greater than or equal to the Caution High Limit and less than the Advisory High Limit, then an Advisory Alarm Violation occurs.

The Trigger Count attribute determines the number of consecutive times the parameter’s value must be out of range before an Alarm Violation is generated.

Table 3.4.4.10.1-1 Parameter Static Alarm Attributes

	Attribute
	Description
	Constraints

	Set Number
	The Set Number differentiates multiple alarm sets. The Set Number provides a link between the calibration sets and the context switches described in Section J1.12.4.4.
	Unsigned Integer List.

Required: Optional unless more than one set defined.

	Trigger Count
	The number of consecutive samples that the alarm condition needs to persist before an alarm is generated.
	Unsigned Integer List
Required: Optional. If not specified, Trigger Count is 1.

	Advisory Low Limit
	Value (inclusive) below which an advisory alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric List

Required: optional

	Advisory High Limit
	Value (inclusive) above which an advisory alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric List

Required: optional

	Caution Low Limit
	Value (inclusive) below which a caution alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric List

Required: optional

	Caution High Limit
	Value (inclusive) above which a caution alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric List

Required: optional

	Warning Low Limit
	Value (Inclusive) below which a warning alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric valueList

Required: optional

	Warning High Limit
	Value (Inclusive) above which a warning alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric List

Required: optional

	Emergency Low Limit
	Value (inclusive) below which an emergency alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric List

Required: optional

	Emergency High Limit
	Value (inclusive) above which an emergency alarm will be generated. The value may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric List

Required: optional

	Limit Type
	Determines if the low and high limits are to be interpreted as the lower and upper bounds of valid or invalid data.

If the Limit Type is Inclusive, then any value between the low and high limits is considered acceptable. Values below the low limit or above the high limit would be considered invalid.

If the Limit Type is Exclusive, then any value between the low and high limits is considered unacceptable. Values below the low limit or above the high limit would be considered valid
	List – one for each set.

Must be one of the following:

Inclusive – specifies that the range of data between the low and high limit is valid

Exclusive – specifies that the range of data between the low and high limit is invalid

Default is Inclusive

Required: optional

3.4.4.10.2 Change Alarm Attributes

The Parameter Change Alarm Attributes contain information required to determine if a Change Alarm violation should be generated. If a parameter does not have any calibrators defined, then the change alarm limits will be applied to the parameter’s encoded value. If a calibrator is defined for a parameter, then the change alarm limits will be applied to the parameter’s calibrated value. The Positive Delta attribute determines the positive change limit in the encoded value or engineering units value between two consecutive parameter values. The Negative Delta attribute determines the negative change limit in the encoded value or engineering units value between two consecutive parameter values. If the positive delta limit or the negative delta limit is exceeded, then a Change Alarm Violation is generated.

Table 3.4.4.10.2-1 Parameter Change Alarm Attributes

	Parameter Attribute
	Description
	Constraints

	Set Number
	The Set Number differentiates multiple alarm sets. The Set Number provides a link between the calibration sets and the context switches described in Section J1.12.4.4.
	Unsigned Integer List.

Required: Optional unless more than one set defined.

	Positive Delta
	A positive change limit between consecutive sample values for the parameter. The Positive Delta may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric value

Value must be positive

Required: optional

	Negative Delta
	A negative change limit between consecutive sample values for the parameter. The Negative Delta may be the encoded value or engineering units value depending on whether or not a Calibrator is defined
	Numeric value

Value must be negative

Required: optional

3.4.4.10.3 Enumeration Alarm Attributes

The Parameter Enumeration Alarm Attributes Table contains information required to determine if an Enumeration Alarm has been violated and if an Enumeration Alarm should be generated. The Alarm Enumeration Label Attribute defines the enumeration that indicates an alarm. For each Alarm Enumeration Label there is a corresponding Alarm Category that defines the level of the alarm. Enumeration Alarm Limits can only be applied to parameters with a Calibrator Type indicating that enumeration calibration is to be applied to the parameter.

Table 3.4.4.10.3-1 Parameter Enumeration Alarm Attributes

	Parameter Attribute
	Description
	Constraints

	Set Number
	The Set Number differentiates multiple alarm sets. The Set Number provides a link between the calibration sets and the context switches described in Section J1.12.4.4.
	Unsigned Integer List.

Required: Optional unless more than one set defined.

	Alarm Enumeration Label
	This is a list of attributes in which each element is a calibrated alarm enumeration value associated with an alarm condition
	7 bit ASCII String List for each Set Number.
Each element can be a maximum of 100 characters in length.

Maximum of 255 elements. Each element must be unique.

Required: optional

	Alarm Category
	This is the alarm category associated with the identified alarm conditions. The categories are defined in CxP 70072-ANX01
	List for each Set Number.
Valid values are:

Advisory

Caution

Warning

Emergency

Required: optional

3.4.5 Voice Metadata

[C3I-1526] Constellation Systems shall use pre-defined voice metadata that includes, timestamps in Universal Time Code (UTC), originator, recipients, encryption types and identifiers, to allow for the context and occurrences of voice transfers to be tagged.

Rationale: Metadata are required in order to establish context and purpose to voice transfer activity. Metadata is required in order to establish voice transfer parameters such as voice loop identification (Air-to-Ground-1/AG_1; Air-to-Ground -2/AG_2; dissimilar/backup link), temporal information, priority, recipients, and rights to the information. It is important to be able to identify which conversation is related to which context. It may also be meaningful to provide identification of Crew Interface Unit of crew members, to tie voice communication to activities a crewmember is engaged in a given time.

[C3I-1527] Constellation Systems shall correlate voice communication and telemetry streams based on pre-defined voice metadata.

Rationale: It is important to align the voice track with telemetry stream and for example, mission phases and tasks, using time stamp or other information. Correlation is valuable to allow for the purpose and context of voice transfers to be tagged, increasing abilities to perform searches on data, incident management, identification of in-flight anomalies, and verification of events that have taken place. Metadata is required in order to establish voice transfer parameters such as voice loop identification (Air-to-Ground-1/AG_1; Air-to-Ground -2/AG_2; dissimilar/ backup link), temporal information, priority, recipients, and rights to the information. It is important to be able to identify which conversation is related to which context. Also, it may be meaningful to provide identification of Crew Interface Unit of crew members, to tie voice communication to activities a crewmember is engaged in a given time. This requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).
[C3I-1528] Constellation Systems shall route voice communication to the intended or allowed recipients, based on pre-defined voice metadata.

Rationale: It is important to be able to route different types of voice traffic appropriately to be able to provide communications links for confidential communications when needed, including medical consultation. Metadata is required in order to establish voice transfer parameters such as voice loop identification
(Air-to-Ground-1/AG_1 ; Air-to-Ground -2/AG_2 ; dissimilar/backup link), temporal information, priority, recipients, and rights to the information. It is important to be able to identify which conversation is related to which context. It may also be meaningful to provide identification of Crew Interface Unit of crew members, to tie voice communication to activities a crewmember is engaged in a given time. This requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).
[C3I-450] Constellation systems shall use pre-defined voice metadata that allows the time-stamps of voice transfers to be known.

Rationale: Metadata is required in order to establish voice transfer parameters such as priority, recipients, and rights to the information, voice loop identification (Air‑to‑Ground-1/AG_1 ; Air-to-Ground -2/AG_2 ; dissimilar/backup link), temporal information, priority, recipients, and rights to the information, and to support storage, archival and retrieval of voice information and linkages to other related information. It is important to be able to identify which conversation is related to which context. The purpose, context, and nature of a voice transfer will be mission dependent and may include information such as the participants, the systems involved, the mission phase, topic of discussion, and other particulars that are represented in the CxDA ontology models. Referencing these concepts will provide a controlled vocabulary for accurate description of the voice transfer. This requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).

3.4.6 Motion Imagery Metadata

[C3I-1529] Constellation Systems shall use pre-defined motion imagery metadata which includes, at minimum, timestamps in UTC, state vector, and Gimbal Angles of the spacecraft camera, originator, recipients, encryption information and encryption identifiers to allow for the purpose, context and the process of voice transfers to be tagged.

Rationale: Metadata are required in order to establish context and purpose to voice transfer activity. Metadata are required in order to establish video transfer parameters such as priority, source camera ID, recipients, type of motion imagery (engineering motion imagery to be immediately transmitted, stored and transmitted over time, or recovered); engineering video used selectively by the Public Affairs Office; proximity video to support docking/undocking, private video for personal exchanges like medical or videoconferencing).

[C3I-1530] Constellation Systems shall correlate motion imagery communication and telemetry streams based on pre-defined motion imagery metadata.

Rationale: It is important to align motion imagery with telemetry stream and for example, mission phases and tasks, using time stamp or other information. Correlation is valuable to allow for the purpose and context of motion imagery transfers to be tagged, increasing abilities to perform searches on data, incident management, identification of in-flight anomalies, and verification of events that have taken place. It is important to be able to identify which conversation is related to which context. Metadata are required in order to establish video transfer parameters such as priority, recipients, type of motion imagery (engineering motion imagery to be immediately transmitted, stored and transmitted over time, or recovered); engineering video used selectively by the Public Affairs Office; proximity video to support docking/undocking, private video for personal exchanges like medical or videoconferencing). Existing video metadata standards such as Moving Picture Experts Group (MPEG)-7 and parts of MPEG-4 and MPEG-21, and the Video Development Initiative (ViDe) Dublin Core Application Profile for Digital Visual, do not support this level of specificity and suffer from a lack of extensibility with semantic information. However, use of metadata fields from these standards, as well as from the World Wide Web Consortium (W3C) Synchronized Multimedia Integration Language, is not precluded. This requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).

[C3I-1531] Constellation Systems shall route motion imagery communication to intended or allowed recipients based on pre-defined motion imagery metadata.

Rationale: It is important to be able to route different types of motion imagery traffic appropriately to be able to provide communications links for confidential communications when needed, including medical consultation. It is important to be able to identify which conversation is related to which context. Metadata are required in order to establish video transfer parameters such as priority, recipients, type of motion imagery (engineering motion imagery to be immediately transmitted, stored and transmitted over time, or recovered; engineering video used selectively by the Public Affairs Office; proximity video to support docking/undocking, private video for personal exchanges such as medical or videoconferencing). Existing video metadata standards such as MPEG-7 and parts of MPEG-4 and MPEG-21, and the ViDe Dublin Core Application Profile for Digital Visual, do not support this level of specificity and suffer from a lack of extensibility with semantic information. However, use of metadata fields from these standards, as well as from the W3C Synchronized Multimedia Integration Language, is not precluded. This requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).
[C3I-451] Constellation Systems shall provide support for storage and retrieval of video and linkages to other related information, using pre-defined motion-imagery metadata including at the minimum, a time-stamp.

Rationale: Metadata are required in order to establish video transfer parameters such as priority, recipients, type of motion imagery (engineering motion imagery to be immediately transmitted, stored and transmitted over time, or recovered; engineering video used selectively by the Public Affairs Office; proximity video to support docking/undocking, private video for personal exchanges like medical or videoconferencing) and rights to the information, and to support storage, archival and retrieval of video and linkages to other related information. It is important to be able to identify which conversation is related to which context. Metadata may also include time-stamps, state vector of the spacecraft and Gimbal Angles of the camera, and other such information. The purpose, context, and content of a video transfer will be mission dependent and may include information such as the participants, the systems involved, the mission phase, spatial objects, and other particulars that are represented in the CxDA ontology models. Referencing these concepts will provide a controlled vocabulary for accurate description of the video transfer. Existing video metadata standards such as MPEG-7 and parts of MPEG-4 and MPEG-21, and the ViDe Dublin Core Application Profile for Digital Visual, do not support this level of specificity and suffer from a lack of extensibility with semantic information. However, use of metadata fields from these standards, as well as from the W3C Synchronized Multimedia Integration Language, is not precluded. This requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).

3.4.7 Communications Infrastructure Metadata

[C3I-1533] Constellation Systems shall provide metadata for the parameters and configuration for any communication networks and telemetry links they operate or configure.

Rationale: Metadata descriptions are needed for reliable and consistent data exchanges between constellation systems by consistent specification of data exchange characteristics according to mission phase and information types. Information Types can be Telemetry, Commands, Voice, Motion Imagery, Files, Network Functions, Time and Navigation. Data Exchange characteristics include parameters such as Peak Application Payload bit rates, bandwidth overheads and database (DB) Shortfalls.
3.5 Encoding

When one software application is to transfer messages to another, there is, unless the two applications have been written in the same language and run on the same type of processor, a requirement to specify an encoding of the message that both applications will recognize. Such an encoding will be a common or standard transfer encoding. In order to specify a transfer encoding of a message, independently of any source processor, operating system, or language, it is necessary to define the syntax of that message using a standard syntax notation. An abstract syntax notation is, therefore, a necessity for software application development and is a prerequisite for a definition of any standard message transfer encoding.

C3I specifies the use of Abstract Syntax Notation number one (ASN.1). The ASN.1 standards are ISO/IEC 8824-1 and ITU-T Rec. X.208. Originally developed by International Telecommunications Union Telecommunication Standardization Sector (ITU-T) to define the complex data structures employed in the X.400 protocols, ASN.1 was subsequently adopted by ISO standards writers to define the protocol data units used in Open Systems Interconnection (OSI) application protocols. More recently, it is in use to define data structures in the Aeronautical Telecommunications Network (ATN), to provide encoding for space telemetry and command in the Consultative Committee for Space Data Systems (CCSDS) standards, and as the binary encoding for XML. ASN.1 is based on several primitive data types and mechanisms for constructing, from these primitives, structured types to suit the application’s requirements. ASN.1 also allows structured types to be defined recursively to construct further, increasingly complex structured types.

ASN.1 encoding rules are sets of rules to transform data specified in the ASN.1 syntax into a standard format agreed for communication between two systems in OSI. Data sent can be decoded by the receiving station using decoders based on the same set of ASN.1 rules. There are several sets of standard encoding rules, of which four are briefly described below. Of those, ASN.1 Packed Encoding Rules (PER) is the recommended encoding to be used, to ensure optimal use of transmission capacity between Constellation Systems – ASN.1 PER has been designed to minimize the bits transmitted.

Packed Encoding Rules (PER), designed to minimize the bits transmitted, allows for compact representations by basing encoding on data types – tags are generally not used, but are generated only as needed to prevent ambiguity. Packed Encoding Rules (PER) allows for the packing of the encoded bits in the most compact way so that the size of messages is as small as possible. PER makes it possible to save bits in the transmitted messages. Its encoding rules work on the basis that every bit that is not needed to transmit useful information is not sent. Thus, for example, a Boolean is transmitted as a single bit rather than as an octet. There are variants of PER, Aligned and Unaligned. The Packed Encoding Rules (PER) are defined in ISO/IEC 8825-2 and ITU-T Rec. X.691.

[C3I-585] Constellation systems shall encode data and information assets according to the CxP 70160-ANX05, Constellation Program Data Architecture Implementation Plan, Annex 05: Encoding Rules.

Rationale: NASA’s Data Architecture Encoding Rules is a NASA standard for establishing consistent encoding of data for transmission.

[C3I-1407] Constellation Systems shall use Constellation Compact Unique Identifiers (CxCUIs) to refer to the parameters and commands in Parameter Sets and Command Sets, as specified in Appendix K.

Rationale: In order to make efficient use of bandwidth, Packet and Command definitions need to be efficiently encoded.

[C3I-418] Constellation Systems shall use a Constellation Identifier (CxID) for referring to definitions and occurrences of Parameter Sets, as specified in Appendix K.

Rationale: The use of a common identifier for Parameter Sets allows for reuse and traceability across Constellation and Missions. Constellation Systems must be able to refer unambiguously to Parameter Definition Sets. An example of a Parameter Set would be Engineering or Science Data Telemetry Definition. Examples of parameter sets are given in CxP 70078, Constellation Program Computing Systems Architecture Description Document (CSADD).

[C3I-452] Constellation Systems shall use bit-aligned ASN.1 Packed Encoding Rules (PER) as the abstract syntax notation to specify data exchange messages.

Rationale: Constellation Systems require a specification of the data structures that are to be transmitted or received. The data structures and messages must be described in a processor, operating system, and language independent manner. The syntax for doing this is termed an abstract syntax. The specification of an application necessarily includes a specification of the data structures that are manipulated by the program, including any messages that it will transmit or receive. When there is a requirement, as in C3I, to specify applications independently of the systems that will host them and independently of the languages in which they will be written, there is a corresponding requirement to specify the data structures and messages in a processor, operating system, and language independent manner. A syntax for doing this is termed an abstract syntax. ASN.1 PER produces a more compact encoding than ASN.1 Basic Encoding Rules (BER). Further flexibility for variants of this encoding can also be provided by using Encoding Control Notation (ECN). The Encoding Control Notation (ECN), defined in ITU-T Recommendation X.692, is a notation for specifying encodings of ASN.1 types differing from those provided by standardized encoding rules. ECN can be used to encode all types of an ASN.1 specification, but can also be used with standardized encoding rules such as BER or PER to specify only the encoding of types that have special requirements. The linkage provided in the ECN specification is well-defined and machine processable. This means that encoders and decoders can be automatically generated from specifications, which reduces both the amount of work and the possibility of errors in making interoperable systems. A further advantage is the ability to provide automatic tool support for testing.

[C3I-429] Constellation Systems shall use bit-aligned ASN.1 Packed Encoding Rules (PER) abstract syntax notation to represent data types of integers with restricted range.

Rationale: Systems may have a need to introduce specialized datatypes that consist of, or include, integers with a restricted range, such as (-127, 127). A standard set of conventions for specifying such restrictions is necessary in order to ensure proper interpretation. ASN.1 PER produces a more compact encoding than ASN.1 Basic Encoding Rules (BER). Further flexibility for variants of this encoding can also be provided by using Encoding Control Notation (ECN). The Encoding Control Notation (ECN), defined in ITU-T Recommendation X.692, is a notation for specifying encodings of ASN.1 types differing from those provided by standardized encoding rules. ECN can be used to encode all types of an ASN.1 specification, but can also be used with standardized encoding rules such as BER or PER to specify only the encoding of types that have special requirements. The linkage provided in the ECN specification is well-defined and machine processable. This means that encoders and decoders can be automatically generated from specifications, which reduces both the amount of work and the possibility of errors in making interoperable systems. A further advantage is the ability to provide automatic tool support for testing.

3.6 Security

Security Information representation arises from the need to standardize on terminology and format for security information that will be exchanged between Constellation Systems using the Data Exchange Layer.

3.6.1 Data

[C3I-919] Constellation systems shall exchange encrypted information using the information representation specified in Chapter 3 of the World Wide Web Consortium (W3C) XML Encryption Syntax and Processing, W3C Recommendation 10 December 2002.

Rationale: Constellation Systems must be able to securely exchange encrypted information among Constellation systems using formats that all Constellation systems will recognize. This encryption standard provides an XML-based approach that can be used for this purpose. This was developed by the W3C, which has developed an extensive set of standards applicable to the exchange of information over the Web, with the formats also applicable to Constellation. XML Encryption pertains to application layer encryption of structured data (or unstructured data embedded inside structured data). This requirement only applies when encryption is performed at the information element level (i.e., inside the body of a file or message).
[C3I-920] Constellation Systems shall exchange integrity protected information using the information representation specified in Chapters 4 and 5 of the World Wide Web Consortium (W3C) XML Signature Syntax and Processing, W3C Recommendation 12 February 2002.

Rationale: Constellation Systems must be able to exchange integrity-protected information using formats that all Constellation systems will recognize. This digital signature standard provides an XML-based approach that can be used for this purpose. This was developed by the W3C, which has developed an extensive set of standards applicable to the exchange of information over the Web, with the formats also applicable to Constellation.

3.6.2 Policy Information

This section specifies the requirements for the representation of security-policy information that may be exchanged between Constellation Systems.

[C3I-1417] Constellation Systems shall use the Extensible Access Control Markup Language (XACML), version 2.0, for encoding and transmitting security policies.

Rationale: Constellation Systems must be able to exchange security policy information that all Constellation Systems will recognize. Such an encoding serves as a standard transfer encoding. In order to specify a transfer encoding of a message independently of any source machine or language, it is necessary to define the syntax of that message using a standard syntax notation. The Organization for the Advancement of Structured Information Standards (OASIS) provides an XML-based security policy standard language called Extensible Access Control Markup Language (XACML) that is both a policy language and an access control language for encoding access control decisions and responses. Both of these capabilities of XACML shall be supported since Constellation Systems may be updating policies, or they may be requesting access control adjudication from a remote Constellation system, and will need to encode both the access control request and the access control response.

3.6.3 Key Exchange Information

This section specifies the requirements for the representation of the cryptographic key information that will be exchanged between Constellation Systems. This section addresses the exchange of public keys and symmetric keys. Key exchange information covered by this section mainly refers to mechanisms that occur at the Application layer of the protocol stack.

[C3I-1418] Constellation Systems shall specify attribute definitions and their types for each key exchange, as defined in Table 3.6.3-1, Key Exchange Representation Attributes, Section J1.14.3.

Rationale: Constellation Systems must be able to securely exchange key information that all Constellation Systems will recognize. Currently, no existing information definition exists to support this. For symmetric keys, work is underway in the Internet Engineering Task Force (IETF) working group on Provisioning of Symmetric Keys, but this is not scheduled to produce a draft standard until June 2008. Some work has also been performed by the World Wide Web Consortium (W3C) to develop an XML Key Management Specification, but this goes beyond just the information representation and is not appropriate for this requirement, but can provide some useful insight into satisfying this requirement. Security should not be embedded in application-level data, and key exchanges and security protocols occurring at the Network layer are handled at the DEM level by conformance to security standards.

Attributes for key exchanges are shown in Table 3.6.3-1.

Table 3.6.3-1 Key Exchange Representation Attributes

	Attribute
	Description
	Data Type

	Key Identifier
	A unique identifier for the key
	String-8 (length 16)

	Issuer
	Organization that issued the key
	String-8 (length 16)

	Algorithm Identifier
	Cryptographic algorithm for which the key is intended
	String-8 (length 16)

	Algorithm Mode
	The cryptographic algorithm mode for which the key is intended
	String-8 (length 16)

	Key
	Holds the actual key
	String-8 (length 256)

	Key Protection Algorithm Identifer
	Specifies the encryption algorithm that was used to protect the key
	String-8 (length 16)

	Expiration Date
	Date after which the key can no longer be used
	Date

	Use
	Whether the key is intended for an algorithm to encrypt data or integrity protect data
	String-8 (length 16)

	Key Integrity Code
	A code that allows the detection of any unauthorized modification of the key
	String-8 (length 256)

	Key Integrity Code Algorithm Identifier
	The integrity code algorithm used to verify if the key has been tampered with
	String-8 (length 16)

	
	
	

3.6.4 Identity Information

This section specifies the requirements for the format of identity information that will be exchanged between Constellation Systems.

[C3I-1419] Constellation Systems that do not have pre-shared keys shall represent identity credentials using the ITU-T standard for public key infrastructure (X.509) certificate version 3, as specified in RFC 3280, Section 4, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, Section 4, Certificate and Certificate Extensions Profile.

Rationale: Constellation Systems must be able to securely exchange identity information that all Constellation Systems will recognize. The X.509 certificate is widely used for Internet World Wide Web, electronic mail, and Internet Protocol Security (IPSec) applications. One of the important features of the X.509 certificate is that it is digitally signed so that its authenticity can be verified.

[C3I-1420] Constellation Systems shall represent identifier-attribute associations using the Security Assertion Markup Language (SAML) v2.0.

Rationale: Constellation Systems must be able to securely exchange information about the attributes of users and other types of entities. The Organization for the Advancement of Structured Information Standards (OASIS) provides an XML-based language called the Security Assertion Markup Language (SAML) that was designed to support the exchange of authentication and authorization information. SAML Assertions can be used to provide additional attribute information, normally about a subject, such as users.

3.6.5 Audit Information

This section specifies the requirements for the format for the exchange of security audit information between Constellation Program (CxP) systems.

[C3I-1421] Constellation Systems shall use attribute definitions and their types, as defined in Table 3.6.5-1 to represent security audit data.

Rationale: Constellation Systems must be able to securely exchange security audit information between Constellation Systems, since one system, such as the Mission System, will be performing security auditing of the Constellation flight systems. Currently, no standard has been found that would address the needs of the Constellation program.

Table 3.6.5-1 AUDIT Representation Attributes

	Attribute
	Description
	Data Type

	Event Date
	The date when the event occurred
	Date

	Event Time
	The time when the event occurred
	Time

	Event Type Code
	Identifies the category of the event
	String-8 (length 16)

	Subject Identifier
	Identifier of the subject, such as user or process, that caused the event
	String-8 (length 16)

	System Origination Point Identifier
	Actual point in the system where the audit event was generated. This could be a device identifier (ID), Internet Protocol (IP) address, or some other identifier associated with a device
	String-8 (length 16)

	Event Outcome Indicator
	Whether the event succeeded or failed
	String-8 (length 16)

	Type-specific information
	Additional information associated with a specific audit event type
	String-8 (length 64)

3.6.6 Authorization Decision Request and Result Information

This section specifies the requirements for the format for the exchange of security authorization requests and result information between Constellation Systems.

[C3I-1422] Constellation Systems shall use the Security Assertion Markup Language (SAML) v2.0 to exchange security authorization requests and result information between Constellation Systems.

Rationale: Constellation Systems must be able to securely exchange authorization and request information between Constellation Systems. The OASIS provides an XML-based language called the Security Assertion Markup Language (SAML) that was designed to support the exchange of authentication and authorization information.

3.7 Requests for Data and Files

[C3I-547] Constellation systems shall request data using data identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: A standard syntax for naming data, expressing data types, their constraints, and naming conventions is needed to ensure: a) human comprehensibility for retrieval, b) machine processing of data names,
c) interoperability between systems, and d) improved assurance for reuse.

[C3I-548] Constellation systems shall request files using file identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: A standard syntax for naming data, expressing data types, their constraints, and naming conventions is needed to ensure: a) human comprehensibility for retrieval, b) machine processing of data names, c) interoperability between systems, and d) improved assurance for reuse.

[C3I-549] Constellation systems shall construct requests for data using a protocol defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: Data retrieval will require Application Program Interfaces (APIs), or services to access registries, repositories, and databases. Each will have its own protocol. By having a neutral protocol, a common interface can be presented to data consumers and producers, at the same time allowing local systems and databases to retain their own interface specifications.

[C3I-550] Constellation systems shall construct requests for file submissions and retrievals using a protocol defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: File access will require Application Program Interfaces (APIs), or services to access registries, directories and other file storage systems. Each will have its own protocol. By having a neutral protocol, a common interface can be presented to file consumers and producers, at the same time allowing local systems to retain their own interface specifications.

4 Verifications

The verification process and requirement closure are performed by the projects and end item developer to ensure the product complies with the requirement as specified and as determined by the verification requirement. There is a verification requirement in Section 4 for each requirement in Section 3. Each requirement is called, either singly or in sets, from a parent document such as the CxP 70000, Constellation Architecture Requirements Document (CARD) or a specific Interface Requirements Document (IRD). Compliance to the verification requirements in this document must be met in addition to any verification requirement specified in the parent document. Where feasible, common test set(s) will be developed and made available to support verification activities. Common test set(s) provide a cost-effective means of ensuring interoperability, the main goal of this standard. Additionally, universally accepted test standards will be cited when possible. Finally, test equipment that is developed and used to verify common requirements may be made available to other developers, subject to availability and sharing agreements. Documentation showing that the verification requirement is met for each requirement must be turned in along with the parent verification requirement closure documentation.

4.1 Data Types

4.1.1 Scalar Data Types

[C3I-423V] The use of standard data types as defined in Appendix E, Constellation System Data Types, shall be verified by Inspection.

An inspection shall be performed on system software to confirm the use of standard data types as defined in Appendix E, Constellation System Data Types.

The verification shall be considered successful when the inspection shows standard data types are used and are in accordance with Appendix E, Constellation System Data Types.

Rationale: Inspection is performed to evaluate the compliance to standard data types.

[C3I-1404V] The use of registered data types defined in the CxDA System of Registries (CxDASOR) described in Appendix G shall be verified by Inspection.

An inspection shall be conducted to confirm that the data types used by system software are registered data types defined in the registry CxDASOR.

The verification shall be considered successful when the inspection confirms that all data types used by the system have been registered in the CxDASOR.

Rationale: Inspection is performed to evaluate the compliance with the CxDA System of Registries (CxDASOR) described in Appendix G.

4.1.1.1 String Representation

[C3I-427V] The use of Unicode character sets encoded according to the 8-bit UCS/Unicode Transformation Format (UTF-8) standard shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of Unicode character sets encoded according to the UTF-8 standard.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., Systems Integration Laboratory [SIL]). The sending system shall generate Unicode character sets and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of Unicode character sets at least twice, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of Unicode character sets are encoded according to the UTF-8 standard and when the test shows: a) all Unicode character sets transmitted are received and are usable, b) the test is repeated for a range of Unicode character sets (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirm the Unicode character sets transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to Unicode character sets encoding standard.

[C3I-1405] The use of Unicode character sets encoded according to the 16-bit Unicode Transformation Format (UTF-16) standard shall be verified by Inspection and Test

An inspection shall be performed on system software to confirm the use of Unicode character sets encoded according to the UTF-16 standard.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate Unicode character sets and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of Unicode character sets at least twice, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of Unicode character sets is encoded according to the UTF-16 standard and when the test shows: a) all Unicode character sets transmitted are received and are usable, b) the test is repeated for a range of Unicode character sets (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirm the Unicode character sets transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to Unicode character sets encoding standard.

4.1.1.2 Integer Representation

[C3I-430V] The encoding of integers as 8-, 16-, 32-, or 64-bit binary unsigned numbers in two’s-complement form or as unsigned integers with the leading bit being the most significant bit shall be verified by an Inspection and Test.

An inspection shall be performed on system software to verify that encoding of integers as 8-, 16-, 32-, or 64-bit binary signed numbers in two’s-complement form, or as unsigned integers with the leading bit being the most significant bit have been satisfied.

A test shall also be performed in the SIL by interfacing the Constellation system to a simulation of another Constellation system for performance verification testing. The test shall use a representative sample of data and message structures that contain signed integer in two’s complement form and unsigned integers. Test results shall be evaluated to verify that encoding integers as 8-, 16-, 32-, or 64-bit binary signed numbers in two’s complement form or as unsigned integers with the leading bit being the most significant bit, have been satisfied.

The verification shall be considered successful when inspection and test show that the Constellation Systems can satisfactorily encode integers as 8-, 16-, 32-, or 64-bit binary unsigned numbers in two’s-complement form or as unsigned integers with the leading bit being the most significant bit.

Rationale: Inspection and testing are performed to confirm the encoding of integers as 8-, 16-, 32-, or 64-bit binary signed numbers in two's-complement form or as unsigned integers with the leading bit being the most significant.

4.1.1.3 Digital Pattern Representation

[C3I-1501V] The encoding of digital pattern data as 8-, 16-, 32-, or 64-bit unsigned integers shall be verified by an Inspection and Test.

An inspection shall be performed on system software to verify that encoding of digital pattern data as 8-, 16-, 32-, or 64-bit unsigned integers, has been satisfied.

A test shall also be performed in the SIL by interfacing the Constellation system to a simulation of another Constellation system for performance verification testing. The test shall use a representative sample of data and message structures that contain digital pattern data. Test results shall be evaluated to verify that encoding digital pattern data as 8-, 16-, 32-, or 64-bit unsigned integers, has been satisfied.

The verification shall be considered successful when inspection and test show that the Constellation Systems can satisfactorily encode digital pattern data as 8-, 16-, 32-, or 64-bit unsigned integers.

Rationale: Inspection and testing are performed to confirm the encoding of digital pattern data as 8-, 16-, 32-, or 64-bit unsigned integers.

4.1.1.4 Floating Point Representation

[C3I-433V] The distinguishing of IEEE 754, IEEE Floating Point Standard, single- and double-precision floating point numbers as distinct data types shall be verified by an Inspection and Test.

An inspection of the CxDASOR shall be performed to verify that Constellation Systems implementation in defining IEEE 754 single- and double-precision floating point numbers as distinct data types has been satisfied.

A test shall also be performed in the SIL by interfacing the Constellation system to a simulation of another Constellation system for performance verification testing. The test shall use a representative sample of data and message structures that contain
IEEE 754 single- and double-precision floating point numbers. Test results shall be evaluated to verify that the receiving system gets the identical single- and double‑precision floating point data types.

The verification shall be considered successful when the inspection and test show the Constellation System is able to distinguish IEEE 754 single- and double-precision floating point numbers as distinct data types.

Rationale: Inspection and testing are performed to confirm that the Constellation Systems utilize IEEE 754 single- and double-precision floating point numbers as distinct data types.

[C3I-432V] The Constellation Systems use of the IEEE Standard 754 to represent single precision floating point numbers shall be verified by Test.

A test shall be performed in the SIL by interfacing the Constellation system to a simulation of another Constellation system for performance verification testing. The test shall use a representative sample of data and message structures that contain
IEEE 754 single (32 bits) precision floating point numbers. Test results shall be evaluated to verify that the IEEE 754 representation of single precision floating point numbers was received correctly.

The verification shall be considered successful when the test shows the Constellation Systems are using IEEE 754 single precision floating point numbers.

Rationale: Testing is performed to confirm that the Constellation Systems utilize IEEE 754 single precision floating point numbers.

[C3I-1502V] The Constellation Systems’ use of the IEEE Standard 754 to represent double precision floating point numbers shall be verified by Test.

A test shall be performed in the SIL by interfacing the Constellation system to a simulation of another Constellation system for performance verification testing. The test shall use a representative sample of data and message structures that contain
IEEE 754 double (64 bits) precision floating point numbers. Test results shall be evaluated to verify that the IEEE 754 representation of double precision floating point numbers was received correctly.

The verification shall be considered successful when the test shows the Constellation Systems are using IEEE 754 double precision floating point numbers.

Rationale: Testing is performed to confirm that the Constellation Systems utilize IEEE 754 double precision floating point numbers.

4.1.1.5 Time Representation

[C3I-434V] The representation of time using data types specified in Appendix E, Constellation System Data Types and in compliance with CCSDS 301.0-B-3, Time Code Formats, shall be verified by an Inspection and Test.

An inspection of the CxDASOR shall be performed to verify that Constellation Systems implementation and ability to represent time using data types specified in Appendix E, Constellation System Data Types and in compliance with CCSDS 301.0-B-3 has been satisfied.

A test shall also be performed in the SIL by having a Constellation System generate several data types of time as specified in Appendix E, Constellation System Data Types and in compliance with CCSDS 301.0-B-3 and verify that the time data type encoding is correctly interpreted.

The verification shall be considered successful when the inspection and test show the Constellation Systems are in compliance with the correct use of data types specified in Appendix E, Constellation System Data Types for representing time.

Rationale: Inspection and testing are performed to confirm Constellation Systems represent time using data types specified in Appendix E, Constellation System Data Types and in compliance with CCSDS 301.0-B-3.

4.1.1.6 Enumeration Representation

[C3I-426V] The registering of the types, names, and codes of enumeration types they define in the CxDA System of Registries (CxDASOR), described in Appendix G, shall be verified by an Inspection.

An inspection of the CxDASOR shall be performed to verify that Constellation Systems implementation of registering types, names, and codes of enumeration types has been satisfied.

The verification shall be considered successful when the inspection shows the Constellation Systems are in compliance with the correct registering of types, names, and codes of enumeration types they define in the CxDA System of Registries (CxDASOR).

Rationale: Inspection is performed to confirm the compliance of registered types, names, and codes of enumeration types as defined in the CxDASOR.

4.1.2 Structured Data Types

[C3I-1429V] The use of standard Structured Data Types, as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of standard Structured Data Types, as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, has been satisfied. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate a data file using standard Structured Data Types and transmit to the receiving system. The cooperating system may be simulated. The systems shall exchange roles (send, receive), if applicable. The test shall be repeated for a range of standard Structured Data Types. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows standard Structured Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, are used and when the test shows: a) all data files with standard Structured Data Types transmitted are received, b) a range of data with standard Structured Data Types and conditions are tested (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to Appendix E, Table E2-1.

[C3I-1430V] The use of registered structural data types defined in the Constellation Data System of Registries (CxDASOR) described in Appendix G, shall be verified by Inspection and Test.

An inspection shall be conducted to confirm that the structural data types used by the system are defined in the registry CxDASOR. The test shall use the flight system or flight equivalent hardware and software in simulated mission conditions. The first part of the test, the Constellation System shall try to use structured data types that are not in the registry. The second part involves the addition of at least two new structured data types to the registry and the use of that data type.

The verification shall be considered successful when the inspection confirms that all structured data types have been registered in the CxDASOR as described in Appendix G and the test confirms that the data types can be correctly used.

Rationale: Inspection and test are performed to evaluate the compliance with the CxDA System of Registries (CxDASOR) described in Appendix G.

4.1.2.1 Arrays

[C3I-1431V] The use of standard Array Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of standard Array Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, has been satisfied. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate a data file using standard Array Data Types and transmit to the receiving system. The cooperating system may be simulated. The systems shall exchange roles (send, receive), if applicable. The test shall be repeated for a range of standard Array Data Types. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows standard Array Data Types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, are used and when the test shows: a) all data files with standard Array Data Types transmitted are received, b) a range of data with standard Array Data Types and conditions are tested (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms that the data received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to Appendix E, Table E2-1.

4.1.2.2 Physical Addresses

[C3I-1432V] The use of standard data types for physical addresses as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, shall be verified by Inspection and Test.

An inspection shall be performed on system software verifying the use a of standard data types for physical addresses as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate data to load to a physical address, and the receiving system shall read it. The receiving system may be simulated. The test shall be repeated for a range of data exchange identifier scheme file types. Applicable mission phases, states, and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection confirms that all physical addresses use standard data types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, and the test confirms that the physical addresses can be correctly used.

Rationale: Inspection and test are performed to evaluate the compliance with Appendix E, Table E2-1.

4.1.2.3 Containers

[C3I-1503V] The use of standard Container data types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types shall be verified by Inspection and Test.

An inspection shall be performed on system software verifying the use of standard Container data types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types. The test shall be performed by interfacing flight or
flight-like components in simulated mission conditions. The sending system shall generate data containing ordered and unordered containers and the receiving system shall read it. The receiving system may be simulated. The test shall be repeated for a range of data to include all identified Container data types. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection confirms that all physical addresses use standard Container data types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types and the test confirms that the standard Container data types can be correctly used.

Rationale: Inspection and test are performed to evaluate the interoperability and compliance with Appendix E, Table E2-1.

4.1.2.4 Sets

[C3I-1433V] The use of standard set data types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, shall be verified by Inspection and Test.

An inspection shall be performed on system software verifying the use of standard set data types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate standard set data to transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of data exchange set data types. Applicable mission phases, states, and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection confirms the use of standard set data types as defined in Appendix E, Constellation System Data Types, Table E2-1, Structured Data Types, and the test confirms that the data types can be correctly used.

Rationale: Inspection and test are performed to evaluate the compliance with Appendix E, Table E2-1.

4.2 Units

[C3I-435V] The use of NASA Non-SI Units of Measure in Appendix F, Constellation System Units, Table F1-1, shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of NASA Non-SI Units of Measure in Appendix F, Constellation System Units, Table F1-1. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate data files with NASA Non-SI Units of Measure and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of data files with NASA Non-SI units of measure. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of NASA Non-SI units of measure complies with Appendix F, Constellation System Units, Table F1-1, and when the test shows: a) all data files with NASA Non-SI units of Measure transmitted are received, b) the test is repeated for a range of data file types with NASA Non-SI units of Measure (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data files with NASA Non-SI units received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality. Inspection is performed to evaluate the compliance to NASA Non-SI Units of Measure specifications.

[C3I-424V] The use of standard NASA SI Units of Measure, as defined in Appendix F, Constellation System Units, Table F2-1, Approved NASA SI Units, shall be verified by Inspection.

An inspection shall be performed on the system to verify the use of standard NASA SI Units of Measure as defined in Appendix F, Constellation System Units, Table F2-1, Approved NASA SI Units.

The verification shall be considered successful when the inspection shows that the use of standard Units of Measure complies with Appendix F, Constellation System Units, Table F2-1, Approved NASA SI Units.

Rationale: Inspection is performed to evaluate the compliance to the use of standard NASA SI Units of Measure specifications.

[C3I-1436V] The use of standard waived NASA Non-SI Units of Measure, as defined in Appendix F, Constellation System Units, Table F3-1, shall be verified by Inspection.

An inspection shall be performed on the system to verify the use of standard waived NASA Non-SI Units of Measure, as defined in Appendix F, Constellation System Units, Table F3-1.

The verification shall be considered successful when the inspection shows the use of standard waived NASA Non-SI Units of Measure complies with Appendix F, Constellation System Units, Table F3-1.

Rationale: Inspection is performed to evaluate the compliance to the use of standard waived NASA Non-SI Units of Measure specifications.

[C3I-1504V] The use, in telemetry packets and command metadata, of a code for each unit from the controlled vocabulary of units as specified in Appendix F, Constellation System Units, Tables F1-1, F2-1, and F3-1, shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate a range of telemetry packets and command metadata to include all of the numeric codes listed in the controlled vocabulary of units as specified in Appendix F, Constellation System Units, Tables F1-1, F2-1, and F3-1. The receiving system may be simulated. Applicable mission phases, states, and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when an analysis of the test data shows the correct use of a code for each unit from the controlled vocabulary of units as specified in Appendix F, Constellation System Units, Tables F1-1, F2-1, and F3-1.

Rationale: Test is performed to evaluate the compliance to the use of numeric codes instead of strings for Units of Measure specifications.

4.3 Transformations and Algorithms

4.3.1 Parameter Transformations

[C3I-442V] The Constellation Systems use of Parameter Transformation that are registered in the CxDA System of Registries (CxDASOR), described in Appendix G, shall be verified by Inspection and Test.

An inspection shall be performed on system software for the implementation of Parameter Transformations that are registered in the CxDASOR.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate and transmit units of measure (e.g., SI, Imperial) that use parameter transformation that are registered and acceptable to the receiving system. The test results shall be evaluated to ensure that the Constellation Systems perform proper translations between the units of measure by the use of parameter transformation that are registered in the CxDASOR. The test shall be repeated for a range of parameter transformation types at least twice. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. Verification (tests) of each parameter transformation and exhaustive verification of safety critical transformations is required unless this has been accomplished by lower level testing or as a result of verification of another requirement. If exhaustive verification (tests) of each parameter transformation is not required, a representative set of transformations shall be utilized, which include some that are safety critical, if applicable.

The verification shall be considered successful when the inspection and test show the Constellation Systems use a schema in the CxDASOR to accurately perform conversion of units of measure using appropriate Parameter Conversion Algorithm and Coefficients standards.

Rationale: To confirm Constellation Systems have complied with adherence to Parameter Transformation that are registered in the CxDA System of Registries (CxDASOR) described in Appendix G.

4.3.2 Units of Measure Conversions

[C3I-445V] The Constellation Systems use of units of measure conversions that are registered in the CxDA System of Registries (CxDASOR), described in Appendix G, shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of units of measure conversions registered in the CxDA System of Registries (CxDASOR), described in Appendix G.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate and transmit units of measure conversions (e.g., SI, Imperial) that are converted to units of measure acceptable to the receiving system. The test results shall be evaluated to ensure that the Constellation Systems perform proper translations between the units of measure conversions that are registered in the CxDASOR. The test shall be repeated for a range of units of measure conversion types at least twice. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. Verification (tests) of each conversion and exhaustive verification of safety critical conversions is required unless this has been accomplished by lower level testing or as a result of verification of another requirement. If exhaustive verification (tests) of each conversion is not required, a representative set of conversions shall be utilized, which include some that are safety critical, if applicable.

The verification shall be considered successful when the inspection and test show the Constellation Systems use units of measure conversions that are accurately registered in the CxDASOR and transmitted between systems.

Rationale: To confirm Constellation Systems have complied with the units of measure conversions using the CxDA System of Registries (CxDASOR) described in Appendix G.

4.3.3 Calibration Set Switching

[C3I-1427V] The use of Calibration Set Switching for parameters when appropriate shall be verified by Inspection and Test.

An inspection shall be performed on system software to ensure the use, when appropriate, of Calibration Set Switching for parameters has been satisfied. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate data with Calibration Set Switching parameters and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of data types with Calibration Set Switching parameters and is performed on a “when appropriate” basis. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. Verification (tests) of each telemetry packet and exhaustive verification of safety critical telemetry is required unless this will have been accomplished by lower level testing or as a result of verification of another requirement. If exhaustive verification (tests) of each telemetry packet and telemetry attribute is not required, a representative set of telemetry data shall be utilized which include some safety critical data.

The verification shall be considered successful when the inspection shows Calibration Set Switching for parameters are used when appropriate and when the test shows:
a) all data types with Calibration Set switching parameters transmitted are received, b) the test is repeated for a range of data types with Calibration Set Switching parameters (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data with Calibration Set Switching parameters received contain expected values and can be performed, when appropriate.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to parameter specifications.

4.3.4 Limit/Expected State Set Switching

[C3I-1428V] The use of Limit/Expected State Set Switching for parameters when appropriate shall be verified by Inspection and Test.

An inspection shall be performed on system software to ensure the use, when appropriate, of Limit/Expected State Set Switching for parameters has been satisfied. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate data with Limit/Expected State Set Switching parameters and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of data types with Limit/Expected State Set Switching parameters and is performed on a “when appropriate” basis. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. Verification (tests) of each telemetry packet and exhaustive verification of safety critical telemetry is required unless this will have been accomplished by lower level testing or as a result of verification of another requirement. If exhaustive verification (tests) of each telemetry packet and telemetry attribute is not required, a representative set of telemetry data shall be utilized which include some safety critical data.

The verification shall be considered successful when the inspection shows Limit/Expected State Set Switching for parameters are used when appropriate and when the test shows: a) all data types with Limit/Expected State Set Switching parameters transmitted are received, b) the test is repeated for a range of data types with Limit/Expected State Set Switching parameters (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data with Limit/Expected State Set Switching parameters received contain expected values and can be performed, when appropriate.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to parameter specifications.
4.3.5 Relativistic Corrections for Gravitational Time Dilation

[C3I-1505V] The use of a standard algorithm for gravitationally separated clocks to correct for the relativistic effect of time dilation shall be verified by Inspection and Test.

An inspection shall be performed on system software verifying the use of a standard algorithm for gravitationally separated clocks. The test shall be performed using flight or flight-like components in simulated mission conditions. A simulation of the identified environments shall be used to verify that the algorithm performs as expected. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection confirms the use of a standard algorithm for gravitationally separated clocks and the test confirms that the algorithm performs the same transformations on all clocks to correct the time differences identified.

Rationale: Inspection is performed to ensure that the same algorithm is used for all clocks and tests to ensure that the algorithm performs as expected.
4.4 Metadata

4.4.1 Lifecycle

[C3I-119V] The generation of metadata values that comply with Section 3.4 shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate motion imagery, voice, command, and telemetry metadata values describing the data and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of voice, motion imagery, command, and telemetry metadata types and descriptions, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows: a) all metadata values are generated and transmitted successfully, b) the test is repeated for a range of metadata types and descriptions, and c) the receiving system confirms the metadata types and descriptions received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality.

[C3I-229V] The exchange of metadata that comply with Section 3.4 shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate motion imagery, voice, command, and telemetry metadata describing the data and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of voice, motion imagery, command, and telemetry metadata types and descriptions, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows: a) all metadata files are generated and transmitted successfully, b) the test is repeated for a range of metadata types and descriptions, and c) the receiving system confirms the metadata types and descriptions received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality.

4.4.2 Common Telemetry and Command Terminology

4.4.2.1 Data Exchange Message (DEM) Mechanism Data Unit Sampling

4.4.2.1.1 Standard Sampling Types

[C3I-1506V] The use of standard sampling types to arrange parameters within a mechanism data unit of a Telemetry Data Exchange Message shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate data using standard sampling types to arrange parameters within a mechanism data unit of a Telemetry Data Exchange Message and transmit to the receiving system. The cooperating system may be simulated. The systems shall exchange roles (send, receive), if applicable. The test shall be repeated for a range of data that fully exercises the standard sampling types’ arrangement function. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows: a) all data files transmitted using standard sampling types are received and are usable, b) a range of data files and conditions are tested (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data files received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality.

[C3I-1507V] The use of standard sampling types to extract parameters from a mechanism data unit of a Telemetry Data Exchange Message shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall transmit data built using standard sampling types to arrange parameters within a mechanism data unit of a Telemetry Data Exchange Message to the receiving system. The sending system may be simulated. The systems shall exchange roles (send, receive), if applicable. The test shall be repeated for a range of data that fully exercises the standard sampling types’ extraction function. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows: a) for all data files transmitted the receiving system can extract parameters using standard sampling types, b) a range of data files and conditions are tested (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data files received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality.

[C3I-1508V] The use of single sample sampling type to compose a Command Data Exchange Message shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate data using single sample sampling type to compose a Command Data Exchange Message and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of data that fully exercises the single sample sampling type composition function. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows: a) all data files transmitted using single sample sampling type are received and are usable, b) a range of data files and conditions are tested, and c) the receiving system confirms the data files received contain only one sample in each instance of a mechanism data unit and the location and length of the parameter remains constant for a given DEM topic.
Rationale: Testing is performed to evaluate interoperability and functionality.

[C3I-1509V] The use of single sample sampling type to decompose a Command Data Exchange Message shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall transmit data using single sample sampling type to compose a Command Data Exchange Message and transmit to the receiving system. The sending system may be simulated. The test shall be repeated for a range of data that fully exercises the single sample sampling type composition function. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows: a) all data files transmitted using single sample sampling type are received and are usable, b) a range of data files and conditions are tested, and c) the receiving system confirms that the data files received contain expected values that can be correctly decomposed using single sample sampling type.
Rationale: Testing is performed to evaluate interoperability and functionality.

4.4.2.2 Data Type Encoding

[C3I-1510V] The use of encoding data types specified in Table 3.4.2.2-1 of Section 3.4.2.2 of CxP 70022-04, Constellation Program Command, Control, Communication, and Information (C3I) Interoperability Standards Book, Volume 4: Information Representation Specification when encoding parameters within a mechanism data unit of a Data Exchange Message shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of encoding data types specified in Table 3.4.2.2-1 of Section 3.4.2.2 to encode parameters.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate command and telemetry messages that contain encoded parameter values and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of encoded parameter values that fully exercise all of the data types and constraints specified in Table 3.4.2.2-1. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of data types specified in Table 3.4.2.2-1 to encode parameters and when the test shows a) all command and telemetry messages and specified data types transmitted are received and are usable, b) the test is repeated for a range of data types (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to encoding data types specified in Table 3.4.2.2-1.

[C3I-1511V] The use of encoding data types specified in Table 3.4.2.2-1 of Section 3.4.2.2 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when decoding parameters within a mechanism data unit of a Data Exchange Message shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of encoding data types specified in Table 3.4.2.2-1 of Section 3.4.2.2 to decode parameters.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall transmit command and telemetry messages that contain encoded parameter values to the receiving system. The sending system may be simulated. The test shall be repeated for a range of encoded parameter values that fully exercise all of the data types and constraints specified in Table 3.4.2.2-1. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall decode the messages using the data types specified in Table 3.4.2.2-1.

The verification shall be considered successful when the inspection shows the use of data types specified in Table 3.4.2.2-1 to decode parameters and when the test shows a) all command and telemetry messages and specified data types transmitted are received and are usable, b) the test is repeated for a range of data types (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to decoding data types specified in Table 3.4.2.2-1.

4.4.2.3 Byte Order

[C3I-1512V] The use of Big Endian byte order when placing parameters within a mechanism data unit of a Data Exchange Message shall be verified by Inspection.

An inspection shall be performed on system software to confirm the use of Big Endian byte order when placing parameters.

The verification shall be considered successful when the inspection shows Big Endian byte order is being used.

Rationale: Inspection is performed to evaluate the compliance to Big Endian byte order.

[C3I-1513V] The use of Big Endian byte order when extracting parameters from a mechanism data unit of a Data Exchange Message shall be verified by Inspection.

An inspection shall be performed on system software to confirm the use of Big Endian byte order when extracting parameters.

The verification shall be considered successful when the inspection shows Big Endian byte orders is being used.

Rationale: Inspection is performed to evaluate the compliance to Big Endian byte order.

4.4.2.4 Calibration

[C3I-1514V] The use of calibrations specified in Section 3.4.2.4 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when calibrating parameters within a mechanism data unit of a Data Exchange Message shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of calibrations specified in Section 3.4.2.4 to calibrate parameters.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate command and telemetry messages that contain calibrated parameter values and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of calibrated parameter values that fully exercise all of the different types of calibration that can be applied to a parameter. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of calibrations specified in Section 3.4.2.4 to calibrate parameters and when the test shows a) all command and telemetry messages transmitted are received and are usable, b) the test is repeated for a range of calibrations (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to using calibrations specified in Section 3.4.2.4 to calibrate parameters.

[C3I-1515V] The use of calibrations specified in Section 3.4.2.4 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when de-calibrating parameters within a mechanism data unit of a Data Exchange Message shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of calibrations specified in Section 3.4.2.4 to de-calibrate parameters.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall transmit command and telemetry messages that contain calibrated parameter values to the receiving system. The sending system may be simulated. The test shall be repeated for a range of calibrated parameter values that fully exercise all of the different types of calibration that can be applied to a parameter. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall de-calibrate parameters in the messages using the calibrations specified in Section 3.4.2.4.

The verification shall be considered successful when the inspection shows the use of calibrations specified in Section 3.4.2.4 to de-calibrate parameters and when the test shows a) all command and telemetry messages transmitted are received and are usable, b) the test is repeated for a range of calibrations (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to using calibrations specified in Section 3.4.2.4 to de‑calibrate parameters.

4.4.3 Command Metadata

4.4.3.1 Command Parameter Metadata

[C3I-1516V] The use of command parameter metadata as specified in Section 3.4.3.1 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book,
Volume 4: Information Representation Specification when building a single parameter of a command shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of command parameter metadata specified in Section 3.4.3.1 when building a single parameter of a command. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate command messages (Data Exchange Message) that contain command parameters to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of command parameter values that fully exercise all of the command parameter attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. A representative set of commands shall be utilized which include some that are safety critical.

The verification shall be considered successful when the inspection shows the use of command parameter metadata specified in Section 3.4.3.1 when building a single parameter of a command, and when the test shows a) all command messages transmitted are received and are usable, b) the test is repeated for a range of command parameter attributes, and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to defining a single parameter of a command specified in Section 3.4.3.1.

4.4.3.2 Command Packing Metadata

[C3I-1517V] The use of command packing metadata as specified in Section 3.4.3.2 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when placing the parameters that make up a command into a mechanism data unit within a Command Data Exchange Message shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of command packing metadata specified in Section 3.4.3.2 when placing the parameters that make up a command into a mechanism data unit within a Command Data Exchange Message.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate command messages (Data Exchange Message) that contain command parameters to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of command parameter values that fully exercise all of the command packing attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. A representative set of commands shall be utilized which include some that are safety critical.

The verification shall be considered successful when the inspection shows the use of command packing metadata specified in Section 3.4.3.2 when placing the parameters that make up a command into a mechanism data unit within a Command Data Exchange Message, and when the test shows a) all command messages transmitted are received and are usable, b) the test is repeated for a range of command packing attributes, and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to the use of command packing metadata specified in Section 3.4.3.2.

[C3I-1518V] The use of command packing metadata as specified in Section 3.4.3.2 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when unpacking the parameters that make up a command from a mechanism data unit within a Command Data Exchange Message shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall transmit command messages (Data Exchange Message) that contain command parameters to the receiving system. The sending system may be simulated. The test shall be repeated for a range of command parameter values that fully exercise all of the command packing attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. A representative set of commands shall be utilized which include some that are safety critical. The receiving system shall unpack the messages using the command packing metadata as specified in Section 3.4.3.2.

The verification shall be considered successful when the inspection shows the use of command packing metadata specified in Section 3.4.3.2 when unpacking the parameters that make up a command from a mechanism data unit within a Command Data Exchange Message, and when the test shows a) all command messages transmitted are received and are usable, b) the test is repeated for a range of command packing attributes, and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to the use of command packing metadata specified in Section 3.4.3.2.

4.4.3.3 Command Instance Metadata

[C3I-1519V] The use of command instance metadata as specified in Section 3.4.3.3 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when creating an instance of a command shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of command instance metadata as specified in Section 3.4.3.3 when creating an instance of a command.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate command messages that contain command instance metadata and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of command instance metadata that fully exercise all of the Command Attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. A representative set of commands shall be utilized which include some that are safety critical.

The verification shall be considered successful when the inspection shows the use of command instance metadata specified in Section 3.4.3.3 when creating an instance of a command and when the test shows a) all command messages and specified data types transmitted are received and are usable, b) the test is repeated for a range of data types (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to confirm the use of command instance metadata.

4.4.3.4 Command Sequence Metadata

[C3I-1520V] The use of command sequence metadata as specified in Section 3.4.3.4 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when creating a unique command sequence shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of command sequence metadata as specified in Section 3.4.3.4 when creating a unique command sequence.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate command messages that contain command sequence metadata and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of command sequence metadata that fully exercise all of the Command Attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. A representative set of commands shall be utilized which include some that are safety critical.

The verification shall be considered successful when the inspection shows the use of command sequence metadata specified in Section 3.4.3.4 when creating a unique command sequence and when the test shows a) all command messages and specified data types transmitted are received and are usable, b) the test is repeated for a range of data types (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to confirm the use of command instance metadata.

4.4.4 Telemetry Metadata

4.4.4.1 Telemetry Stream Attributes

[C3I-1521V] The use of telemetry stream attributes as specified in Section 3.4.4.1 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when building a telemetry stream shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of telemetry stream attributes as specified in Section 3.4.4.1 when defining a telemetry stream.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate a single telemetry stream and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of telemetry stream attributes that fully exercise all of the telemetry attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of telemetry stream attributes specified in Section 3.4.4.1 when building a telemetry stream and when the test shows a) all telemetry stream attributes transmitted in a single telemetry stream are received and are usable, b) the test is repeated for a range of telemetry stream attributes (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirm the telemetry stream transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to confirm the use of telemetry stream attributes.

4.4.4.2 Telemetry Parameter Attributes

[C3I-1522V] The use of telemetry parameter metadata as specified in Section 3.4.4.2 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification building a single telemetry parameter measurement shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of telemetry parameter metadata as specified in Section 3.4.4.2 when building a single telemetry parameter measurement.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate telemetry messages that contain telemetry parameter metadata and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of telemetry parameter metadata that fully exercise all of the Telemetry Attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of telemetry parameter metadata specified in Section 3.4.4.2 when defining a single telemetry parameter measurement and when the test shows a) all telemetry messages and parameter attributes transmitted are received and are usable, b) the test is repeated for a range of telemetry parameter attributes (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to confirm the use of telemetry parameter metadata.

4.4.4.3 Sampling Attributes

[C3I-1523V] The use of telemetry sampling attribute metadata as specified in Section 3.4.4.3 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when placing a telemetry parameter into a mechanism data unit within a Telemetry Data Exchange Message shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of telemetry sampling attribute metadata as specified in Section 3.4.4.3 when placing a telemetry parameter into a mechanism data unit within a Telemetry Data Exchange Message.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate telemetry messages (Data Exchange Message) that contain telemetry parameters to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of telemetry parameter values that fully exercise all of the telemetry packing attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of telemetry sampling attribute metadata specified in Section 3.4.4.3 when placing the telemetry parameters into a mechanism data unit within a Telemetry Data Exchange Message, and when the test shows a) all telemetry messages transmitted are received and are usable, b) the test is repeated for a range of telemetry packing attributes, and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance with metadata packing definitions specified in Section 3.5.3.2.

[C3I-1524V] The use of telemetry sampling attribute metadata as specified in Section 3.4.4.3 of CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification when extracting a telemetry parameter from a mechanism data unit within a Telemetry Data Exchange Message shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of telemetry sampling attribute metadata as specified in Section 3.4.4.3 when extracting a telemetry parameter from a mechanism data unit within a Telemetry Data Exchange Message.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall transmit telemetry messages (Data Exchange Message) that contain telemetry parameters to the receiving system. The sending system may be simulated. The test shall be repeated for a range of telemetry parameter values that fully exercise all of the telemetry packing attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall extract the messages using the telemetry sampling attribute metadata as specified in Section 3.4.4.3.

The verification shall be considered successful when the inspection shows the use of telemetry sampling attribute metadata specified in Section 3.4.4.3 when extracting the parameters that make up a telemetry message from a mechanism data unit within a Telemetry Data Exchange Message, and when the test shows a) all telemetry messages transmitted are received and are usable, b) the test is repeated for a range of telemetry packing attributes, and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance with metadata packing definitions specified in Section 3.4.4.3.

4.4.4.4 Telemetry Parameter Polynomial Calibrator Attributes

4.4.4.5 Telemetry Parameter Line Segment Calibrator Attributes

4.4.4.6 Telemetry Parameter Enumeration Calibrator Attributes

4.4.4.7 Telemetry Parameter Alarms

[C3I-1525V] The use of alarm attributes as specified in Section 3.4.4.7 of
CxP 70022-04, Constellation Program C3I Interoperability Standards Book, Volume 4: Information Representation Specification for a telemetry parameter measurement for monitoring of limit violations shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the defining of alarm attributes, as specified in Section 3.4.4.7, for a telemetry parameter measurement for monitoring of limit violations.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall transmit telemetry messages that contain telemetry parameters that do and do not violate warning or critical limits to the receiving system. The sending system may be simulated. The test shall be repeated for a range of telemetry parameters, including some that are safety critical, that fully exercise all of the alarm attributes and constraints specified. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall determine which parameters violate warning or critical limits using the alarm attributes specified in Section 3.4.4.7.

The verification shall be considered successful when the inspection shows the use of alarm attributes, as specified in Section 3.4.4.7, for a telemetry parameter measurement for monitoring of limit violations and when the test shows a) all telemetry messages and specified parameters transmitted are received and are usable, b) the test is repeated for a range of telemetry parameters (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) both systems confirms the messages transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to confirm the use of alarm attributes metadata.

4.4.5 Voice Metadata

[C3I-1526V] The use of pre-defined voice metadata which includes, timestamps in UTC, originator, recipients, encryption types and identifiers, to allow for the context and occurrences of voice transfers to be tagged shall be verified by Inspection and Test.

An inspection shall be performed on system software verifying the use of pre-defined voice metadata which includes timestamps in UTC, originator, recipients, encryption types and identifiers, to allow for the context and occurrences of voice transfers to be tagged.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate a voice file along with the voice file metadata to transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of voice files. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of pre-defined voice metadata which includes timestamps in UTC, originator, recipients, encryption types and identifiers, to allow for the context and occurrences of voice transfers to be tagged and when the test shows a) all files transmitted are received and are usable, b) the test is repeated for a range of voice files, and c) the receiving system confirms the voice file and voice file metadata received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to the use of pre-defined voice metadata.

[C3I-1527V] The correlation of voice communication and telemetry streams based on predefined voice metadata shall be verified by Test.

The test shall use the flight system or flight equivalent hardware and software in simulated mission conditions. The sending system shall transmit a varied number of voice communications, telemetry streams and predefined voice metadata to the receiving system. The sending system may be simulated. The test shall be repeated for a range of voice files. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall be able to correlate voice communication and telemetry streams based on predefined voice metadata.

The verification shall be considered successful when an analysis of the data produced by the test shows that a correlation of voice communication and telemetry streams based on predefined voice metadata can be established for all voice and telemetry transfers.

Rationale: Testing is performed to evaluate interoperability.

[C3I-1528V] The routing of voice communication to the intended or allowed recipients, based on predefined voice metadata shall be verified by Test.

The test shall use the flight system or flight equivalent hardware and software in simulated mission conditions. The sending system shall transmit a varied number of voice communications. The sending system may be simulated. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall be able to route voice communication based on predefined voice metadata.

The verification shall be considered successful when an analysis of the data produced by the test shows that the correct routing of voice communication based on predefined voice metadata for all transferred data occurred.

Rationale: Testing is performed to evaluate interoperability.

[C3I-450V] The generation of pre-defined voice metadata that describes the time-stamps of voice transfers, shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the generation of voice metadata that describes the time-stamps of voice transfers.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate voice metadata describing time-stamps of the voice transfer and transmit to the receiving system. The test shall be repeated with each system performing all applicable roles. The cooperating system may be simulated. The test shall be repeated for a range of voice metadata types. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows generation of voice metadata describes the time-stamps of the voice transfer in accordance with terminology and schemas as defined in the CxDA System of Registries (CxDASOR), and when the test shows a) all pre-defined voice metadata generated and transmitted is received, b) applicable roles and a range of voice metadata types, descriptions and conditions are tested (testing should also include data points on the boundary or outside the boundaries of the allowed range), c) the receiving system confirms the voice metadata types and descriptions received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality. Inspection is performed to evaluate the compliance with CxDA System of Registries (CxDASOR) specifications for voice metadata generation. The requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).

4.4.6 Motion Imagery Metadata

[C3I-1529V] The use of pre-defined motion imagery metadata which includes, at minimum, timestamps in UTC, state vector and Kimbal Angles of the spacecraft, originator, recipients, encryption information and encryption identifiers to allow for the purpose, context and the process of voice transfers to be tagged shall be verified by Inspection and Test

An inspection shall be performed on system software verifying the use of pre-defined motion imagery metadata which includes, at minimum, timestamps in UTC, state vector and Kimbal Angles of the spacecraft, originator, recipients, encryption information and encryption identifiers to allow for the purpose, context and the process of voice transfers to be tagged.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate a motion imagery file along with the motion imagery file metadata to transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of motion imagery files. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of pre-defined motion imagery metadata which includes, at minimum, timestamps in UTC, state vector and Kimbal Angles of the spacecraft, originator, recipients, encryption information and encryption identifiers to allow for the purpose, context and the process of voice transfers to be tagged and when the test shows a) all files transmitted are received and are usable, b) the test is repeated for a range of motion imagery files, and c) the receiving system confirms the motion imagery file and motion imagery file metadata received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to the use of pre-defined motion imagery metadata.

[C3I-1530V] The correlation of motion imagery communication and telemetry streams based on predefined motion imagery metadata shall be verified by Test.

The test shall use the flight system or flight equivalent hardware and software in simulated mission conditions. The sending system shall transmit a varied number of motion imagery communications, telemetry streams and predefined motion imagery metadata to the receiving system. The sending system may be simulated. The test shall be repeated for a range of motion imagery files. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall be able to correlate motion imagery communication and telemetry streams based on predefined motion imagery metadata.

The verification shall be considered successful when an analysis of the data produced by the test shows that a correlation of motion imagery communication and telemetry streams based on predefined motion imagery metadata can be established for all motion imagery and telemetry transfers.

Rationale: Testing is performed to evaluate interoperability.

[C3I-1531V] The routing of motion imagery communication to intended or allowed recipients based on predefined motion imagery metadata shall be verified by Test.

The test shall use the flight system or flight equivalent hardware and software in simulated mission conditions. The sending system shall transmit a varied number of motion imagery communications. The sending system may be simulated. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice. The receiving system shall be able to route motion imagery communication based on predefined motion imagery metadata.

The verification shall be considered successful when an analysis of the data produced by the test shows that the correct routing of motion imagery communication based on predefined motion imagery metadata for all transferred data occurred.

Rationale: Testing is performed to evaluate interoperability.

[C3I-451V] The generation of pre-defined motion-imagery metadata that support the storage and retrieval of video and linkages to other related information shall be verified by inspection and test.

An inspection shall be performed on system software to verify the generation of pre‑defined motion imagery metadata that support the storage and retrieval of video and linkages to other related information is used in accordance with terminology and schemas defined in the CxDASOR. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate pre-defined motion imagery metadata supporting the storage and retrieval of video and linkages to other related information and transmit to the receiving system. The test shall be repeated for all applicable system roles (send, receive). The cooperating system may be simulated. The test shall be repeated for a range of motion imagery metadata types, storage locations, and linkages to related information, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the generation of pre-defined motion imagery metadata that support the storage and retrieval of video and linkages to other related information is in accordance with terminology and schemas as defined in the CxDASOR and when the test shows a) all motion imagery metadata files are generated and transmitted successfully, b) the test is repeated for a range of motion imagery metadata types, storage locations, and linkages to related information (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the motion imagery metadata types and descriptions received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality. Inspection is performed to evaluate the compliance the CxDA System of Registries (CxDASOR). The requirement is intended to apply to mission control systems (see the applicability matrix in Appendix C).

4.4.7 Communications Infrastructure Metadata

[C3I-1533V] The providing of metadata for the parameters and configuration for any communication networks and telemetry links they operate and/or configure shall be verified by Test.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate metadata for the parameters and configuration for any communication networks and telemetry links and transmit to the receiving system. The cooperating system may be simulated. The test shall be repeated for a range of parameters and configurations, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows a) all metadata files are generated and transmitted successfully, b) the test is repeated for a range of communication networks and telemetry links, and c) the receiving system confirms the metadata parameters and configuration received contain expected values.

Rationale: Testing is performed to evaluate interoperability and functionality.

4.5 Encoding

[C3I-585V] The encoding of all data and information assets as defined by CxP 70160‑ANX05 Constellation Program Data Architecture Implementation Plan, Annex 05: Encoding Rules shall be verified by Test.

The test shall use the flight system or flight equivalent hardware and software in simulated mission conditions. The sending system shall generate a representative sample of possible data and information. The cooperating system may be simulated. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the test shows the Constellation systems are in compliance with the use of the rules defined in CxP 70160-ANX05 Constellation Program Data Architecture Implementation Plan, Annex 05: Encoding Rules.

Rationale: To confirm Constellation systems have complied with the C3I Interoperability Specification for Information Representation Specification, evaluation of the verification data will be performed. To confirm interoperability and functionality, testing will be conducted.

[C3I-1407] The interpretation of telemetry data packets using Constellation Compact Unique Identifiers (CxCUIs) to refer to the parameters and commands in Parameter Sets and Command Sets as specified in the CxP 70160-ANX 03 Constellation Program Data Architecture Plan, Annex 03: Naming and Identification Rules shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of Constellation Compact Unique Identifiers (CxCUIs) to refer to the parameters and commands in Parameter Sets and Command Sets as specified in the CxP 70160-ANX 03 Constellation Program Data Architecture Plan, Annex 03: Naming and Identification Rules.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate telemetry data packets and commands and transmit to the receiving system. The cooperating system may be simulated. The systems shall exchange roles (send, receive), if applicable. The test shall be repeated for a range of data packet types and commands. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of telemetry data packet complies with the CxP 70160-ANX 03 Constellation Program Data Architecture Plan, Annex 03: Naming and Identification Rules and when the test shows a) all telemetry data packets transmitted are received, b) a range of data packet types and commands and conditions are tested (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data packets and commands received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to the naming and identifier specifications and rules.

[C3I-418V] The use of a Constellation Identifier (CxID) for referring to definitions and occurrences of Parameter Sets shall be verified by Inspection and Test.

An inspection shall be performed on system software verifying the use of a Constellation Identifier (CxID) for referring to definitions and occurrences of Parameter Definition Sets.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate a file with a Constellation Identifier (CxID) to transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of data exchange identifier scheme file types. Applicable mission phases, states, and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows Constellation Identifiers (CxIDs) for referring to definitions and occurrences of Parameter Sets are used, and when the test shows a) all Constellation Identifier (CxID) files transmitted are received and are usable, b) the test is repeated for a range of data exchange identifier scheme file types (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data exchange identifier scheme types received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to data exchange identifier scheme specifications and rules.

[C3I-452V] The use of bit-aligned ASN.1 Packed Encoding Rules (PER) as the abstract syntax notations to specify data exchange messages shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of bit-aligned ASN.1 Packed Encoding Rules (PER) as the abstract syntax notations to specify data exchange messages.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate data exchange messages with the bit-aligned ASN.1 Packed Encoding Rules (PER) as the abstract syntax notations to transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of data exchange message types. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows bit-aligned ASN.1 Packed Encoding Rules (PER) as the abstract syntax notations to specify data exchange messages are used and when the test shows a) all data exchange message types transmitted are received and are usable, b) the test is repeated for a range of data exchange message types and conditions (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the data exchange message types received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to the bit-aligned ASN.1 Packed Encoding Rules (PER) as the abstract syntax notation specifications.

[C3I-429V] The use of bit-aligned ASN.1 Packed Encoding Rules (PER) abstract syntax notation to represent data types of integers with restricted range shall be verified by an Inspection and Test.

An inspection of the Constellation Systems software shall be performed to show that the use of bit-aligned ASN.1 Packed Encoding Rules (PER) abstract syntax notation to represent data types of integers with a restricted range, has been satisfied.

A test shall also be performed in the SIL by interfacing the Constellation system to a simulation of another Constellation system for performance verification testing. The test shall use a representative sample of data and message structures that include integers with a restricted range, such as (-127, 127). Test results shall be evaluated to verify that the use of bit-aligned ASN.1 Packed Encoding Rules (PER) abstract syntax notation to represent data types of integers with restricted range has been satisfied.

The verification shall be considered successful when the inspection and test show the Constellation Systems use bit-aligned ASN.1 Packed Encoding Rules (PER) abstract syntax notation to represent data types of integers with restricted range.

Rationale: Inspection and testing are performed to confirm the use of an abstract syntax notation to represent data types of integers with restricted range.

4.6 Security

4.6.1 Data

[C3I-919V] The exchange of encrypted information using the information representation specified in Chapter 3 of the World Wide Web Consortium (W3C) XML Encryption Syntax and Processing, W3C Recommendation 10 December 2002 shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the exchange of encrypted information using the information representation specified in Chapter 3 of the World Wide Web Consortium (W3C) XML Encryption Syntax and Processing, W3C Recommendation 10 December 2002 has been satisfied.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate encrypted information using the information representation specified and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of encrypted information at least twice. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions.

The verification shall be considered successful when the inspection shows that the encrypted information are in the correct format as specified in Chapter 3 of the World Wide Web Consortium (W3C) XML Encryption Syntax and Processing, W3C Recommendation 10 December 2002 and when the test shows a) all encrypted information in correct formats are received, b) the test is repeated for a range of configurations and format types, roles, mission phases, states, modes, and conditions at least twice, and c) the receiving system confirms the data products with encrypted information contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to format specifications.

[C3I-920V] The exchange of integrity protected information using the information representation specified in Chapters 4 and 5 of the World Wide Web Consortium (W3C) XML Signature Syntax and Processing, W3C Recommendation 12 February 2002 shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the exchange of integrity protected information using the information representation specified in Chapters 4 and 5 of the World Wide Web Consortium (W3C) XML Signature Syntax and Processing, W3C Recommendation 12 February 2002 has been satisfied.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate integrity protected information using the information representation specified and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of integrity protected information at least twice. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions.

The verification shall be considered successful when the inspection shows that the integrity protected information are in the correct format as specified in Chapters 4 and 5 of the World Wide Web Consortium (W3C) XML Signature Syntax and Processing, W3C Recommendation 12 February 2002 and when the test shows a) all integrity protected information in correct formats are received, b) the test is repeated for a range of configurations and format types, roles, mission phases, states, modes, and conditions at least twice, and c) the receiving system confirms the data products with integrity protected information contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to format specifications.

4.6.2 Policy Information

[C3I-1417V] The Constellation Systems use of the Extensible Access Control Markup Language (XACML), Version 2.0, for encoding and transmitting security policies shall be verified by inspection and test.

An inspection of the Constellation Systems software shall be performed to verify the use of the Extensible Access Control Markup Language (XACML), Version 2.0, for encoding and transmitting security policies.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate a security policy message and transmit it to the receiving system. The test results shall be evaluated to verify that the receiving system accurately received the security policy information. The results shall also be evaluated to ensure that both the access control request and the access control response were properly encoded and executed.

The verification shall be considered successful when the inspection and test show the Constellation Systems uses the Extensible Access Control Markup Language (XACML), Version 2.0, for encoding and transmitting security policies, as well as for encoding access control decisions and responses.

Rationale: To confirm Constellation Systems have complied with the use of the Extensible Access Control Markup Language (XACML), Version 2.0, for encoding and transmitting security policies.

4.6.3 Key Exchange Information

[C3I-1418V] The specification for each key exchange, attribute definitions and their types, as defined in Table 3.6.3-1, Key Exchange Representation Attributes, Section 3.6.3, shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify that the specification for each key exchange, attribute definitions, and their types has been satisfied. The test shall be performed by interfacing flight or flight-like components in simulated mission conditions. The sending system shall generate keys for exchange with attribute definitions and types, as defined in Table 3.6.3-1 – Key Exchange Representation Attributes, Section 3.6.3, and transmit to the receiving system. The test shall be repeated with systems performing all applicable roles. The cooperating system may be simulated. The test shall be repeated for specific key exchanges with attribute definitions, types and values, if applicable.

Applicable mission phases, states and modes shall be simulated for both nominal and off nominal conditions.

The verification shall be considered successful when the inspection shows the exchange of keys with attribute definitions and types between systems is specified in accordance with Table 3.6.3-1, Key Exchange Representation Attributes, Section 3.6.3, and when the test shows a) keys with attribute definitions and types are transmitted, b) the test is repeated for multiple keys, types, roles, mission phases, states, modes, and conditions, if applicable (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the receiving system confirms the exchange of keys contains expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to key exchange specifications.

4.6.4 Identity Information

[C3I-1419V] The representation for user identity credentials using the ITU-T standard for Public Key Infrastructure (X.509) certificate version 3, as specified in RFC 3280, Section 4, shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify user identity credentials are represented using the X.509 certificate version 3, as specified in RFC 3280.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate user identity credential data and transmit to the receiving system. The test shall be repeated with systems performing all applicable roles. The cooperating system may be simulated. The test shall be repeated for represented user identity credentials and values, as specified in RFC 3280. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions.

The verification shall be considered successful when the inspection shows that user identity credentials are represented using the X.509 certificate version 3, as specified in RFC 3280, Section 4, and when the test shows a) all data received by both systems contains expected values, b) all applicable roles of a system are tested (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) applicable phases, states, modes, and conditions are tested at least twice.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance with identity credential specifications.

[C3I-1420V] The representation for identifier-attribute associations using the Security Assertion Markup Language (SAML) v2.0 shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify identifier-attribute associations are represented using the Security Assertion Markup Language (SAML) v2.0.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate identifier-attribute association data and transmit to the receiving system. The test shall be repeated with systems performing all applicable roles. The cooperating system may be simulated. The test shall be repeated for identifier-attribute association data and values, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions.

The verification shall be considered successful when the inspection shows identifier-attribute associations are represented using the Security Assertion Markup Language (SAML) v2.0 and when the test shows a) all identifier-attribute association data received by both systems contains expected values, b) all applicable roles of a system are tested, and c) applicable phases, states, modes, and conditions are tested at least twice.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance with identifier-attribute association specifications.

4.6.5 Audit Information

[C3I-1421V] The use of attribute definitions and their types, as defined in Table 3.6.5-1 – Audit Representation Attributes, Section 3.6.5, to represent security audit data shall be verified by Inspection and Test.

An inspection shall be performed on system software to confirm the use of attribute definitions and their types, as defined in Table 3.6.5-1 – Audit Representation Attributes to represent security audit data.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate security audit data is represented by the use of attribute definitions and their types and transmit to the receiving system. The receiving system may be simulated. The test shall be repeated for a range of security audit data that fully exercise all of the data types specified in Table 3.6.5-1 Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions at least twice.

The verification shall be considered successful when the inspection shows the use of attribute definitions and their types to represent security audit data and when the test shows a) all security audit data transmitted are received and are usable, b) the test is repeated for a range of attribute definitions and their types (testing should also include data points on the boundary or outside the boundaries of the allowed range), and
c) both systems confirms the information transmitted and received contain expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance to the proper representation of security audit data.

4.6.6 Authorization Decision Request and Result Information

[C3I-1422V] The use of the Security Assertion Markup Language (SAML), v2.0, to exchange security authorization request and result information between Constellation Systems shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of the Security Assertion Markup Language (SAML) v2.0 to exchange security authorization request and result information has been satisfied.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The sending system shall generate data files to exchange security authorization requests and result information and transmit to the receiving system. The test shall be repeated with systems performing all applicable roles. The cooperating system may be simulated. The test shall be repeated for exchanging security authorization requests and result information, if applicable. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions.

The verification shall be considered successful when the inspection shows the exchange of authorization data between systems complies with the Security Assertion Markup Language (SAML), v2.0, and when the test shows a) exchange of security authorization request and result information are successful, b) the test is repeated for multiple exchanges of authorization requests and results, roles, mission phases, states, modes, and conditions, if applicable (testing should also include data points on the boundary or outside the boundaries of the allowed range), and c) the sending, receiving systems confirm the exchanged information contains expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance with security authorization specifications.

4.7 Requests for Data and Files

[C3I-547V] The use of data identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G to request data shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of data identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G to request data has been satisfied.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The receiving system shall request data using data identifiers from the sending system. The cooperating system may be simulated. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions.

The verification shall be considered successful when the inspection shows the use of data identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G and when the test shows a) exchange of data using data identifiers are successful, b) the test is successfully repeated for multiple exchanges of data using data identifiers and results, roles, mission phases, states, modes, and conditions, if applicable, and c) the sending and receiving systems confirm the exchanged information contains expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance with data requests using data identifiers.

[C3I-548V] The use of file identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G to request files shall be verified by Inspection and Test.

An inspection shall be performed on system software to verify the use of file identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G to request files has been satisfied.

The test shall be performed by interfacing flight or flight-like components in simulated mission conditions (e.g., SIL). The receiving system shall request files using file identifiers from the sending system. The cooperating system may be simulated. Applicable mission phases, states and modes shall be simulated for both nominal and off-nominal conditions.

The verification shall be considered successful when the inspection shows the use of file identifiers defined in the CxDA System of Registries (CxDASOR) described in Appendix G and when the test shows a) exchange of files using file identifiers are successful, b) the test is successfully repeated for multiple exchanges of file using file identifiers and results, roles, mission phases, states, modes, and conditions, if applicable, and c) the sending and receiving systems confirm the exchanged information contains expected values.

Rationale: Testing is performed to evaluate interoperability. Inspection is performed to evaluate the compliance with file requests using file identifiers.

[C3I-549V] The construction of requests for data using a protocol defined in the CxDA System of Registries (CxDASOR) described in Appendix G shall be verified by Inspection.

An inspection shall be performed on system software to verify the construction of requests for data using a protocol defined in the CxDA System of Registries (CxDASOR) described in Appendix G has been satisfied.

The verification shall be considered successful when the inspection shows the construction of requests for data are using a protocol defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: Inspection is performed to evaluate the compliance with the protocol for construction of requests for data.

[C3I-550V] The construction of requests for file submissions and retrievals using a protocol defined in the CxDA System of Registries (CxDASOR) described in
Appendix G shall be verified by Inspection.

An inspection shall be performed on system software to verify the construction of requests for file submissions and retrievals using a protocol defined in the CxDA System of Registries (CxDASOR) described in Appendix G has been satisfied.

The verification shall be considered successful when the inspection shows the construction of requests for file submissions and retrievals are using a protocol defined in the CxDA System of Registries (CxDASOR) described in Appendix G.

Rationale: Inspection is performed to evaluate the compliance with the protocol for construction of requests for file submissions and retrievals.

APPENDIX A
ACRONYMS AND ABBREVIATIONS
AND glossary of terms

A1.0 ACRONYMS AND ABBREVIATIONS

	ADCS
	Attitude Determination and Control System

	ADL
	Applicable Document List

	AIS
	Aeronautical Information Services

	AIXM
	Aeronautical Information Exchange Model

	API
	Application Program Interface

	ASCII
	American Standard Code for Information Interchange

	ASN.1
	Abstract Syntax Notation One

	ASTM
	American Society for Testing and Materials

	ATN
	Aeronautical Telecommunication Network

	BER
	Basic Encoding Rules

	BIH
	Bureau Internationale de l’Heure

	BIPM
	International Bureau of Weights and Measures (Bureau International des Poids et Mesures)

	C3I
	Command, Control, Communication, and Information

	CARD
	Constellation Architecture Requirements Document

	CCSDS
	Consultative Committee for Space Data Systems

	CD
	Committee Draft

	CDS
	CCSDS Day Segmented Code

	CER
	Canonical Encoding Rules

	CEV
	Crew Exploration Vehicle

	CGPM
	General Conference of Weights and Measures (Conference Generale des Poids et Mesures)

	CPU
	Central Processing Unit

	CR
	Change Request

	CRL
	Certificate Revocation List

	CSA
	Constellation System Architecture

	CSADD
	Computing Systems Architecture Description Document

	CUC
	CCSDS Unsegmented Code

	Cx
	Constellation

	CxCcCN
	Camel Case Common Name

	CxCUI
	Constellation Compact Unique Identifier

	CxDA
	Constellation Data Architecture

	CxDASOR
	Constellation Data Architecture System of Registries

	CxDN
	Constellation Display Names

	CxEID
	Constellation Encoded Identifier

	CxID
	Constellation Identifier

	CxLID
	Constellation Long Identifier

	CxP
	Constellation Program

	CxRIN
	Constellation Registry of Entity Identifiers and Names

	CxSID
	Constellation Short Identifier

	DEM
	Data Exchange Message

	DER
	Distinguished Encoding Rules

	EA
	Enterprise Architecture

	ECN
	Encoding Control Notation

	EIR
	End Item Response

	ESMD
	Exploration Systems Mission Directorate

	FAA
	Federal Aviation Administration

	GIF
	Graphic Interchange Format

	IA
	Information Architecture

	IA-5
	International Alphabet 5

	ID
	Identifier

	IEC
	International Electrotechnical Commission

	IEEE
	Institute of Electrical and Electronics Engineers

	IETF
	Internet Engineering Task Force

	IMC
	Internet Mail Consortium

	IP
	Internet Protocol

	IPSec
	Internet Protocol Security

	IRD
	Interface Requirements Document

	ISO
	International Organization for Standardization

	ITU
	International Telecommunications Union

	ITU-T
	International Telecommunications Union Telecommunication Standardization Sector

	JD
	Julian Date

	
	Julian Day

	JPEG
	Joint Photographic Experts Group

	LSAM
	Lunar Surface Access Module

	MAC
	Message Authentication Code

	MIME
	Multipurpose Internet Mail Extension

	MJD
	Modified Julian Date

	MPEG
	Moving Picture Experts Group

	MSID
	Measurement Stimulus Identification

	OASIS
	Organization for the Advancement of Structured Information Standards

	OMG
	Object Management Group

	OSI
	Open Systems Interconnection

	OWL
	Web Ontology Language

	PDF
	Portable Document Format

	PER
	Packed Encoding Rules

	PUI
	Program Unique Identifier

	RF
	Radio Frequency

	SAML
	Security Assertion Markup Language

	SCPS
	Space Communications Protocol Specification

	SI
	International System of Units (Système International d'Unités)

	SIL
	Systems Integration Laboratory

	SM
	Service Module

	SOAP
	Simple Object Access Protocol

	TAI
	International Atomic Time

	TBD
	To Be Determined

	TBR
	To Be Resolved

	TCS
	Thermal Control System

	TIFF
	Tagged Image File Format

	TJD
	Truncated Julian Date

	URI
	Universal Resource Identifier

	URL
	Universal Resource Locator

	US
	Upper Stage

	UT
	Universal Time

	UTC
	Coordinated Universal Time

	UTF
	Unicode Transformation Format

	UTF-8
	8-bit UCS/Unicode Transformation Format

	UTF-16
	16-bit Unicode Transformation Format

	VoIP
	Voice Over Internet Protocol

	W3C
	World Wide Web Consortium

	WD
	Working Draft

	XACML
	Extensible Access Control Markup Language

	XER
	XML Encoding Rules

	XML
	Extensible Markup Language

	XMP
	Extensible Metadata Platform

	XSD
	Extensible Markup Language Schema Definition

	XSL-FO
	Extensible Stylesheet Language - Formatting Object

	XTCE
	XML Telemetric and Command Exchange

	YDT
	Year Day Time

A2.0 glossary of terms

The terms and their definitions used in the C3I Volume 4 Information Representation Specification are as follows.

	Term
	Description

	Absolute time
	“Time irrespective of local standards or epochs” Source: dictionary.reference.com

	Abstract syntax
	The specification of Application Layer data or application-protocol control- information by using notation rules which are independent of the encoding techniques used to represent them. One example of an Abstract Syntax is Abstract Syntax Notation number one (ASN.1). The ASN.1 standards are ISO/IEC 8824-1 and ITU-T Rec. X.208. Originally developed by CCITT to define the complex data structures employed in the X.400 protocols, ASN.1 was subsequently adopted by International Organization for Standardization (ISO) standards writers to define the protocol data units used in OSI application protocols. More recently, it is in use to define data structures in the Aeronautical Telecommunications Network (ATN), to provide encoding for space telemetry and command in the Consultative Committee for Space Data Systems (CCSDS) standards, and as the binary encoding for XML. ASN.1 is based on several primitive data types and mechanisms for constructing, from these primitives, structured types to suit the application’s requirements. ASN.1 also allows structured types to be defined recursively to construct further, increasingly complex structured types

	Algorithm
	“Algorithm is a finite list of well-defined instructions for accomplishing some task that, given an initial state, will terminate in a defined end-state.” Source: http://en.wikipedia.org/wiki/Algorithm . Algorithms are, for example, needed for a number of signal processing tasks, such as signal enhancements, compressions, and decompressions

	ASCII
	A coded set of alphanumeric and control characters used for information interchange

	Authentication
	The act of establishing or confirming something (or someone) as authentic (i.e., truly what it is claimed to be). For example, verifying an identity claim through the use of a Message Authentication Code (MAC) or digital signature that should only be able to be provided by the individual truly associated with the claimed identity

	Camel Case
	A convention in which names are all lower case with the exception of the beginning of a new word, which is in uppercase. Constellation Data Architecture (CxDA) differentiates between upper camel case-where the first letter of the name is also capitalized-and lower camel case, where it is not. An example of an upper camel case name is ‘UpperCamelCase.’ A lower or just camel case name example would be ‘lowerCamelCase’

	Command
	Directive to a processor or system to perform a particular action or function. Parameters can be specified at the time of command initiation

	Command response
	A defined status message output from any recipient of a command that forwards or processes that command

	Conformance Levels
	Interoperability of commands can have different levels of sophistication from statically defined telemetry/command, to dynamic approaches, scripting, and agent-based information exchange. By establishing conformance levels, flexibility can be provided without sacrificing integrity of interoperability

	Conversion
	See Transformation

	Cx Data Models
	The Constellation Data Models provide formal knowledge structures so that information can become intelligible to systems and to people, to better accommodate and facilitate human information access, knowledge capture, and sharing. Cx Data Model’s purpose is to establish unambiguous information and knowledge structures and to provide knowledge modeling guidelines for the data, information and knowledge structures needed for engineering work across the entire life cycle within Constellation. The models embody a basic capability for provisioning sets of controlled vocabularies to guide the use of terminology throughout Constellation

	CxDASOR
	The Constellation Data Architecture System of Registries (CxDASOR) provide formal knowledge structures so that information can become intelligible to systems and to people, to better accommodate and facilitate human information access, knowledge capture, and sharing. CxDASOR’s purpose is to establish unambiguous information and knowledge structures and to provide knowledge modeling guidelines for the data, information, and knowledge structures needed for engineering work across the entire life cycle within the Exploration Systems Mission Directorate (ESMD) initiatives. The models embody a basic capability for provisioning sets of controlled vocabularies to guide the use of terminology throughout ESMD. CxDASOR’s vision is “to fully exploit Extensible Markup Language (XML) and related Semantic Web Technologies as enabling technologies to achieve interoperability for the Exploration Systems Mission Directorate (ESMD)”

	Constellation Identifier
	A fully qualified hierarchical string identifying a property (parameter) or an attribute of a property within a specific context of the Constellation Hierarchy. The Constellation Identifier is abbreviated CxID

	Constellation Short Identifier
	A compact form of the hierarchical string identifying a property (parameter) or an attribute of a property within a specific context of the Constellation Hierarchy. The Constellation Short Identifier is abbreviated CxSID

	Constellation Compact Unique Identifier
	This is intended for software data structures and mission operators and is like the Measurement Stimulus Identification (MSID) for Space Shuttle telemetry, and the Program Unique Identifier (PUI) used for International Space Station telemetry. The Constellation Compact Unique Identifier is abbreviated CxCUI

	Constellation Hierarchy
	A composition of entities that defines the structural make-up of a system (or component) within Constellation

	Coordinated Universal Time (UTC)
	See Universal Time

	Data Exchange Message
	DEM, Data Exchange Message, is used to transfer data. Each message is a series of bytes consisting of a header, variable length data, and an optional trailer

	DEM Data Block
	The DEM Data Block is the area of the data exchange message that contains the user data for telemetry and commands

	Date
	Synonymous with "time-scale reading", but usually referred to as calendar. Note that the date can be expressed in years, months, days, hours, minutes, seconds, and fractions thereof

	Decoding
	See ‘Encoding’

	De-serialization
	See ‘Serialization’

	Downlink
	The transmission of data produced by a flight vehicle to the ground; to a relay satellite; to another flight vehicle; or to some combination of these entities. This could alternately be referred to as a “from-link”

	Encoding
	The transformation of information from one form of representation to another form of representation. Values from the source representation space are mapped to values in the target domain. An example would be assigning integer values to literals in an enumeration. The opposite operation is termed ‘decoding’. The term encoding is also used to refer to encryption, but the term "encoding" implies no use of a key

	End Item Response (EIR)
	A telemetry indication, from the destination hardware device or destination software location (i.e., "end item") of a specific command, which provides feedback that the command has nominally executed at the end item with the anticipated effect on that end item. (Same as Volume 1)

	Epoch
	The origin or the beginning of a time scale.

	Flight Vehicle
	A vehicle, which is generally composed of multiple elements, used to transport persons or things to and/or from a location outside the Earth's atmosphere. (Same as Volume 1)

	International Atomic Time (TAI)
	See Universal Time

	Identifier
	A character or group of characters constituting a value that distinguishes one entity from another. (Adapted from ISO 6523)

	Julian Date
	The Julian day number followed by the fraction of the day elapsed since the preceding noon (12 hours UT).

Example: The date 1900 January 0.5 UT corresponds to JD = 2415020.0

	Julian Day Number
	A number of a specific day from a continuous day count having an initial origin of 12 hours UT on 1 January 4713 BC, Julian Calendar (start of Julian Day zero). Example: The day extending from 1900 January 0.5 d UT to 1900 January 1.5 d UT as the number 2 415 020

	Locus Of Control
	The entity or entities that determine what commands to issue, when to issue them, and perform the actual command transmission. The information model should support situational awareness of the locus of control as well as implementation of the transfer of the locus of control

	Metadata
	Metadata is data about data, including information describing aspects of actual data items, such as name, type, format, content, and other descriptive information. Common command metadata supports interoperability and discovery between elements. In a telemetry context, this is all the information needed to identify and process a specific parameter. These properties are typically values that do not change very often

	Modified Julian Date (MJD)
	Julian Date less 2,400,000.5 days.

Note that other modifications of the Julian date can be created by using other constants; for example:

The constant 2,436,203.5 days, which occurs on 1958 January 1, gives the origin of TAI, recognized as the epoch of both the CCSDS Unsegmented Code (CUC) and the CCSDS Day Segmented Code (CDS).

The constant 2,440,000.5, which occurs on 1968 May 24.0 gives the origin of the Truncated Julian Date (TJD) time scale used in the NASA PB-5J time code

	Name Space
	A set of unique values which serve as identifiers for a corresponding set of entities

	Ontology
	An ontology is a model of concepts and their properties that formalize a subject area or domain of interest by characterizing the relationships and attributes that distinguish concepts and how they relate to one another

	Parameter
	A parameter can be a physical variable derived by a smart sensor at the point of measurement or by a processing algorithm at the point of telemetry reception. A parameter is a property and can be a state variable either in the form of raw data or converted data at the point of detection

	Relative Time
	A delta time added to an absolute time. If you think in terms of relative to an event, there is still an absolute time associated with that event

	Serialization
	The process of transforming an information structure into a bit stream as a series of bytes (octets) for transmission across a network connection link. The series of bytes or the format can be used to re-create the information content that is identical in its internal state to the original information. The opposite operation, extracting a data structure from a series of bytes, is termed ‘de-serialization’

	System
	Physical entities that have functional capabilities allocated to them necessary to satisfy
architecture-level mission objectives. Systems can perform all allocated functions within a mission phase, or through mated operations with other Constellation Systems (e.g., Crew Exploration Vehicle [CEV], Lunar Surface Access Module [LSAM]) (Same as Volume 1)

	Telemetry
	The measurement and transmission of data by radio or other means from remote sources to receiving stations for recording and analysis. (Same as Volume 1)

	Telemetry Format
	The definition of the set of telemetry parameters to be simultaneously downlinked, along with the sample rate of each parameter. Telemetry formatting organizes telemetry parameters for downlinking

	Transformation
	In this document, the term “transformation” refers to the conversion of values between engineering units. “Calibration” refers to the conversion of raw counts to engineering units, or vice versa (the latter sometimes called “reverse calibration”), and is a form of transformation

	Truncated Julian Date
	A four-decimal-digit day count originating at midnight 1968-05-23,24

	Universal Time (UT)
	In applications in which an imprecision of a few hundredths of a second cannot be tolerated, it is necessary to specify the form of UT which should be used:

	
	UT0
	is the mean solar time of the prime meridian obtained from direct astronomical observation

	
	UT1
	is UT0 corrected for the effects of the Earth’s polar motion; it corresponds directly with the angular position of the Earth around its axis of diurnal rotation

	
	UT2
	is UT1 corrected empirically for the effects of a small seasonal fluctuation in the rate of rotation of the Earth

	
	TAI
	is the international reference scale of Atomic Time (TAI), based on the second of the International System of Units (SI), as realized at sea level, and is formed by the Bureau International de l’Heure (BIH) on the basis of clock data supplied by cooperating establishments. It is in the form of a continuous scale; e.g., in days, hours, minutes and seconds from the origin 1958 January 1 (adopted by the CGPM 1971)

	
	UTC
	is the time scale maintained by the BIH which forms the basis of a coordinated dissemination of standard frequencies and time signals. It corresponds exactly in rate with TAI but differs from it by an integral number of seconds. The UTC scale is adjusted by the insertion or deletion of seconds (positive or negative leap seconds) to ensure approximate agreement with UT1

	Uplink
	The transmission of data to a flight vehicle from a ground site, a relay satellite, or another flight vehicle. This could alternately be referred to as a “to-link”

	
	

APPENDIX B
OPEN WORK

B1.0
to be determined

Table B1-1 lists the specific To Be Determined (TBD) items in the document that are not yet known. The TBD is inserted as a placeholder wherever the required data is needed and is formatted in bold type within brackets. The TBD item is numbered based on the section where the first occurrence of the item is located as the first digit and a consecutive number as the second digit (i.e., <TBD 4-1> is the first undetermined item assigned in Section 4 of the document). As each TBD is solved, the updated text is inserted in each place that the TBD appears in the document and the item is removed from this table. As new TBD items are assigned, they will be added to this list in accordance with the above described numbering scheme. Original TBDs will not be renumbered.

Table B1-1 To Be Determined Items

	TBD/TBR
Number
	Planned Closure Date
	Method Of Resolution (see directions)
	Need Milestone
	Comments

B2.0
to be resolved

Table B2-1 lists the specific To Be Resolved (TBR) issues in the document that are not yet known. The TBR is inserted as a placeholder wherever the required data is needed and is formatted in bold type within brackets. The TBR issue is numbered based on the section where the first occurrence of the issue is located as the first digit and a consecutive number as the second digit (i.e., <TBR 4-1> is the first unresolved issue assigned in Section 4 of the document). As each TBR is resolved, the updated text is inserted in each place that the TBR appears in the document and the issue is removed from this table. As new TBR issues are assigned, they will be added to this list in accordance with the above described numbering scheme. Original TBRs will not be renumbered.

Table B2-1 To Be Resolved Issues

	TBD/TBR
Number
	Planned Closure Date
	Method Of Resolution (see directions)
	Need Milestone
	Comments

	TBR-ADL-1
	6/10/2008
	Development of the referenced documents.
	PDR
	Data Architecture annexes are still in development. Will keep TBR until baselined.

	TBR-I-1
	12/31/08
	TIMs for discussion
	PDR
	Alignment of XTCE required practices (Appendix I) with Cx Data Architecture

Known Issues Concerning CxDA / XTCE Required Practice Alignment

General Issues

The XTCE Required Practices (RP) establish a way to describe a focused set of telemetry and commands attributes, those minimally required based on past experience. The CxDA provides a richer set of properties with which to describe telemetry and commands and relate them to other aspects of a mission. Conceptually, the RP may be regarded as a subset of the CxDA properties. In practice, however, because XTCE expresses information in a different way from the CxDA, mapping from the RP to the CxDA is not always a simple matter of mapping terminology, but sometimes requires mapping of structures.

What Alignment Means

Ultimately, alignment of the RP with the CxDA will mean that given any XTCE instance document that conforms to the RP, there is an unambiguous way to convert the information in the document to a representation in the CxDA. This is the XTCE-to-CxDA direction, and it has been identified as forward work.

Alignment in this sense will support interoperability by making everything defined in an XTCE instance document an explicit, identifiable entity across Constellation. The XTCE representation, based as it is on XML, is limited in its ability to uniquely identify things because of its relatively brittle hierarchy-based conventions. There is no practical way to cross-reference items between XTCE documents, and even within a document the capability is limited. The CxDA, based on RDF and OWL, provides the ability to identify everything via a URI, across documents and systems.

A first step towards this direction of alignment is to identify, for every XTCE element type and attribute supported by the RP, the corresponding classes, properties, and instances from the CxDA that would be used to express equivalent information. This step is close to being accomplished.

There is a further aspect of alignment in this direction, which concerns the CxDA controlled vocabularies. The CxDA contains controlled vocabularies for units, datatypes, and enumerations. Alignment of the XTCE RP with CxDA requires an unambiguous way to map from any units, datatypes, and enumerations contained in an XTCE instance document (conforming to the RP) to units, datatypes, and enumerations contained in the controlled vocabularies. The complications involved in such alignment are discussed below.

In the opposite direction, alignment means that consumers of telemetry and command metadata have an unambiguous way of obtaining, from the CxDA, the same information that they would have obtained from an XTCE instance document. This, too, has been identified as forward work.

One of the challenges in the CxDA-to-XTCE direction is that the CxDA is much richer. This shows up, for example, in the different ways that hierarchies are treated in XTCE and CxDA. In XTCE, there is a single hierarchy of SpaceSystems. The notion of SpaceSystem in XTCE is meant to be very general, so that it can refer to any scale from a spacecraft (or even a group of spacecrafts) to a low-level device.

In CxDA, however, there are multiple dimensions of hierarchy. For example, there are structural hierarchies, which are most likely the way XTCE SpaceSystem hierarchies will be used But there are also functional hierarchies.

In general, then, there is much information in the CxDA that will most likely not appear in an XTCE document but that is useful for interoperability. The ultimate goal of alignment must address the operational implications of this: will the XTCE documents be decorated with additional semantic information? Will there be a phase-out of XTCE and a phase-in of CxDA-generated XML documents in there place? What will the information flow be between XTCE documents, project databases, and the CxDA repositories?

Alignment of Units

Alignment of units has been fully accomplished by including, in the RP, the requirement to identify units via their respective Qnames, which unambiguously identify them in the CxDA controlled vocabulary for units.

Alignment of Datatypes

Alignment of datatypes and enumerations is more complicated than alignment of units because datatype and enumerations are not explicitly referenced in XTCE. Datatypes in XTCE are represented through the choice of metadata elements. For example, a parameter is described by giving its parameterType, which may be an IntegerParameterType, a StringParameterType, a FloatParameterType, etc. The underlying datatype is implicit in the choice of XML element; it is further specified via the sizeInBits attribute, which is available for all of these elements.

In contrast to this approach, in the CxDA a datatype is an instance of class data:Datatype. A string datatype, for example, is an instance of data:StringType (which is a subclass of data:Datatype). The particular instance identifies the maximum permissible length of strings of this type. A string parameter is then defined as a parameter whose datatype property takes, as its value, a particular string datatype.

This difference in representation approach complicates the alignment goal that XTCE instance documents conform to the CxDA datatype vocabulary. We cannot simply say, as we do with units, that datatypes be referenced by their respective Qnames in the controlled vocabulary, because XTCE does not contain datatype references (as attribute values). Instead, alignment will require ensuring that all datatypes available for use in XTCE (conforming to the RP) correspond to datatypes in the CxDA controlled vocabulary. Alignment will further mean that, given any structure in XTCE (such as a parameter type definition) that entails a datatype. There is an unambiguous method of identifying the corresponding CxDA datatype. Ideally, there should be an automated way of performing this mapping.

Alignment of Encoding Types

A further complication in the alignment of the XTCE RP and CxDA is that XTCE distinguishes between the size of a parameter and the size of its encoding. In the RP, the available parameter sizes correspond to a small set of standard sizes, while the available encoding sizes include non-standard lengths less than or equal to the standard sizes. For example, integer parameters may be 16-bit, 32-bit, or 64-bit unsigned or signed integers; but their encodings may have sizeInBits ranging from 1-16, 17-32, and 22-64, respectively. Currently, in the CxDA, there are integer datatypes for standard sizes, but not for every size between, say, 1 and 64. The underlying assumption in the CxDA is that the encoding will make use of a standard packing method, such as ASN.1 Packed Encoding Rules (PER), which will algorithmically reduce standard-size integers (and other datatypes) to more compact form on the basis of their content.

Alignment of Enumerations

Enumerations are used in various places in the XTCE schema, for example in the available alarm severity levels (permissible values for the alarmLevel attribute). These enumerations, which are known from the XTCE schema, can be easily included in the CxDA controlled vocabulary. This is forward work that can be accomplished in the very short term.

A more challenging issue concerns the treatment of enumerated parameters, that is, parameters whose values are from a discrete set of possible values. In XTCE, such enumerations are specified through a sequence of elements with the attributes value and label. The value is numeric, while the label is the conceptual meaning of the numeric value for that parameter. This corresponds to the concept TaggedEnumeration in the CxDA (an untagged enumeration is simply a set of labels).

As with datatypes, the challenge arises from the fact that in XTCE, an enumeration is given inline as part of the definition of the parameter type, rather than referenced as an entity in itself. In the CxDA, a particular tagged enumeration is an instance of the class data:TaggedEnumeration, and its admissible values are given by the property data:hasLiteral. Alignment will there require an unambiguous method of mapping any instance of the enumerated parameter (or argument) pattern in XTCE to a corresponding instance of class data:TaggedEnumeration in the CxDA. There are two aspects to this: 1) defining how the mapping works, and 2) ensuring that the mapping is defined on all enumerated parameters that are defined, i.e., that all enumerations are represented in the CxDA controlled vocabulary. Ideally there will be an automated way to enforce this.

Summary

Alignment of the XTCE RP with the CxDA involves some non-trivial issues, not all of which are resolved. To date, alignment of units has been accomplished, and mapping of XTCE RP elements and attributes to CxDA classes, properties, and instances has been almost fully accomplished.

Short-term forward work has been identified to ensure that all enumerations contained in the XTCE schema (and conforming to the RP) are represented in the CxDA controlled vocabularies.

Forward work is also projected for alignment of datatypes and enumerations that will occur in XTCE instance documents. In addition, forward work will address a method of obtaining, from the CxDA, the information that is contained in an XTCE instance document.

appendix c
applicability matrix

	Section Number
	Section Name

	Linked Items

	Identity
	Name
	Comments
	C3I IOS
Volume
	DRM
	Name

	3.1
	Data Types
	
	
	
	

	C3I-1535
	
	
	V4
	LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	LC
	ABB_EVA Systems

	
	
	
	
	LC
	ABB_Ground Operations

	
	
	
	
	LC
	ABB_Mission Support

	3.1.1
	Scalar Data Types
	
	
	
	

	C3I-423
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1404
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.1.1
	String Representation
	
	
	
	

	C3I-427
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1405
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.1.2
	Integer Representation
	
	
	
	

	C3I-430
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.1.3
	Digital Pattern Representation
	
	
	
	

	C3I-1501
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.1.4
	Floating Point Representation
	
	
	
	

	C3I-432
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-433
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1502
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.1.5
	Time Representation
	
	
	
	

	C3I-434
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.1.6
	Enumeration Representation
	
	
	
	

	C3I-426
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.2
	Structured Data Types
	
	
	
	

	C3I-1429
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1430
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.2.1
	Arrays
	
	
	
	

	C3I-1431
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.2.2
	Physical Addresses
	
	
	
	

	C3I-1432
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.2.3
	Containers
	
	
	
	

	C3I-1503
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.1.2.4
	Sets
	
	
	
	

	C3I-1433
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.2
	Units
	
	
	
	

	C3I-424
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-435
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1436
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1504
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.3
	Transformations and Algorithms
	
	
	
	

	C3I-1536
	
	
	V4
	LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	LC
	ABB_EVA Systems

	
	
	
	
	LC
	ABB_Ground Operations

	
	
	
	
	LC
	ABB_Mission Support

	3.3.1
	Parameter Transformations
	
	
	
	

	C3I-442
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.3.2
	Units of Measure Conversions
	
	
	
	

	C3I-445
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.3.3
	Calibration Set Switching
	
	
	
	

	C3I-1427
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	3.3.4
	Limit/Expected State Set Switching
	
	
	
	

	C3I-1428
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Mission Support

	3.3.5
	Relativistic Corrections for Gravitational Time Dilation
	
	
	
	

	C3I-1505
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Mission Support

	3.4
	Metadata
	
	
	
	

	C3I-1537
	
	
	V4
	LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	LC
	ABB_EVA Systems

	
	
	
	
	LC
	ABB_Ground Operations

	
	
	
	
	LC
	ABB_Mission Support

	3.4.1
	Lifecycle
	
	
	
	

	C3I-119
	
	
	V4
	 LTC
	ABB_Cargo Launch Vehicle (CaLV)

	
	
	
	
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 LTC
	ABB_Lunar Surface Access Module (LSAM)

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-229
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 LTC
	ABB_Lunar Surface Access Module (LSAM)

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.2.1.1
	Standard Sampling Types
	
	
	
	

	C3I-1506
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1507
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1508
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1509
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.2.2
	Data Type Encoding
	
	
	
	

	C3I-1510
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1511
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.2.3
	Byte Order
	
	
	
	

	C3I-1512
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1513
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.2.4
	Calibration
	
	
	
	

	C3I-1514
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1515
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.2.5
	Command andTelemetry Definition Files
	
	
	
	

	C3I-1413
	
	
	V4
	IC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	IC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	IC
	ABB_EVA Systems

	
	
	
	
	IC
	ABB_Ground Operations

	
	
	
	
	IC
	ABB_Mission Support

	C3I-1538
	
	
	V4
	LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	LC
	ABB_EVA Systems

	
	
	
	
	LC
	ABB_Ground Operations

	
	
	
	
	LC
	ABB_Mission Support

	3.4.3.1
	Command Parameter Metadata
	
	
	
	

	C3I-1516
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.3.2
	Command Packing Metadata
	
	
	
	

	C3I-1517
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1518
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.3.3
	Command Instance Metadata
	
	
	
	

	C3I-1519
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.3.4
	Command Sequence Metadata
	
	
	
	

	C3I-1520
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.4.1
	Telemetry Stream Attributes
	
	
	
	

	C3I-1521
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.4.2
	Telemetry Parameter Attributes
	
	
	
	

	C3I-1522
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.4.3
	Parameter Sampling Attributes
	
	
	
	

	C3I-1523
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1524
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.4.7
	Telemetry Parameter Alarms
	
	
	
	

	C3I-1525
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.4.5
	Voice Metadata
	
	
	
	

	C3I-450
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1526
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-1527
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-1528
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	3.4.6
	Motion Imagery Metadata
	
	
	
	

	C3I-451
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-1529
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-1530
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-1531
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	3.4.7
	Communications Infrastructure Metadata
	
	
	
	

	C3I-1533
	
	
	V4
	 IC, LC
	ABB_Mission Support

	3.5
	Encoding
	
	
	
	

	C3I-418
	
	
	V4
	 IC, LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	C3I-429
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-452
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-585
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-1407
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 IC, LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 IC, LC
	ABB_Ground Operations

	
	
	
	
	 IC, LC
	ABB_Mission Support

	3.6.1
	Data
	
	
	
	

	C3I-919
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-920
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	3.6.2
	Policy Information
	
	
	
	

	C3I-1417
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	3.6.3
	Key Exchange Information
	
	
	
	

	C3I-1418
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LC
	ABB_Mission Support

	3.6.4
	Identity Information
	
	
	
	

	C3I-1419
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	C3I-1420
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	3.6.5
	Audit Information
	
	
	
	

	C3I-1421
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	3.6.6
	Authorization Decision Request and Result Information
	
	
	
	

	C3I-1422
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	3.7
	Requests for Data and Files
	
	
	
	

	C3I-547
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LTC
	ABB_Lunar Surface Access Module (LSAM)

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-548
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LTC
	ABB_Lunar Surface Access Module (LSAM)

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-549
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LTC
	ABB_Lunar Surface Access Module (LSAM)

	
	
	
	
	 LC
	ABB_Mission Support

	C3I-550
	
	
	V4
	 LC
	ABB_Crew Exploration Vehicle (CEV)

	
	
	
	
	 LC
	ABB_Crew Launch Vehicle (CLV)

	
	
	
	
	 LC
	ABB_EVA Systems

	
	
	
	
	 LC
	ABB_Ground Operations

	
	
	
	
	 LTC
	ABB_Lunar Surface Access Module (LSAM)

	
	
	
	
	 LC
	ABB_Mission Support

appendix d
Information Model Specification

The Information Model is concerned with how information entities that occur in telemetry and command are named; how their data types and units are unambiguously specified; and how they relate to Constellation Systems, subsystems, devices, resources and other components of the Constellation Architecture. Constellation System software (and hardware) will need to be designed to encode and decode telemetry and command messages.

Without tools, new encoding rules typically take longer to implement and deploy. If encoding and decoding are done manually, or if utilizing tools that have not seen as much thorough interoperability tests as tools that have been in use much longer and more widely, errors will occur. For these reasons, standard encoding schemes are required. What follows in this specification are statements of requirements and illustrative examples of how information structures will be represented. The Constellation Data Architecture System Of Registries (CxDASOR) is the system of record for all detailed definitions.

Constellation Systems must be able to exchange information that all involved systems will recognize. Such an encoding will be a common or standard transfer encoding. In order to specify a transfer encoding of a message, independently of any source machine or language, it is necessary to define the syntax of that message using a standard syntax notation. An abstract syntax notation is, therefore, a prerequisite for a definition of any standard message transfer encoding. Interoperability depends on data integrity from the specification level to the encoding levels. If Constellation Systems can choose their own encoding rules, there is no guaranteed interoperability.

 When one application is to transfer messages to another, there is, unless the two applications have been written in the same language and run on the same type of machine, a requirement to specify an encoding of the message that both applications will recognize. The syntax for doing this is termed an abstract syntax.

D1.0
Contexts of Use

The specification applies to a number of contexts of use, as defined by the following categories:

a. Telemetry Packets and Commands transmitted over communication links

b. Extensible Markup Language (XML) message structures that operate within and between ground stations

c. Command and Control User Interfaces

d. Documentation in a number of forms: specifications, schematics, and labeling of resources on board Constellation Systems

appendix e
constellation system data types

For interoperability to occur without the need for translations, mappings, and other conversions, data types and their units should be the same for all Constellation Systems.

The sections that follow define the data types used by the Constellation Program.

E1.0
Scalar Data Types

Table E1-1 Scalar Data Types

	Data Type
	Description
	Syntax
	Code
	Value Range
	Value Encodings

	Boolean
	Used to designate a two-value data type, such as true/false, yes/no, on/off
	BOOLEAN
	0
	{literal, literal}
	{0,1} as 1 bit,

Explicit tags for values and display names

	Character
	Single character
	CHAR
	1
	UTF-8 codes 0-127
	8 bits of an octet

	Enumeration
	Finite set of values representing the possible values for a variable or parameter
	ENUM
	2
	{literal [,literal]+}
	Explicit numeric tags (1..(2^16)-1) used for each literal and display values

	Integers

	Octet
	8-bit unsigned integer
	OCTET
	3
	0..255
	1 octet

	Short Unsigned Integer
	16-bit unsigned integer
	UI16
	4
	0 .. 2^16-1
	2 octets

	Short Signed Integer
	16-bit signed integer
	SI16
	5
	-2^15-1 .. 2^15-1
	2 octets
(2’s complement)

	Unsigned Integer
	32-bit unsigned integer
	UI32
	6
	0 .. 2^32-1
	4 octets

	Signed Integer
	32-bit signed integer
	SI32
	7
	-2^31-1 .. 2^31-1
	4 octets

	Long Unsigned Integer
	64-bit unsigned integer
	UI64
	8
	0 .. 2^64-1
	8 octets

Table E1-1 Scalar Data Types - continued

	Data Type
	Description
	Syntax
	Code
	Value Range
	Value Encodings

	Long Signed Integer
	64-bit signed integer
	SI64
	9
	-2^63-1 .. 2^63-1
	8 octets

	Restricted Integer
	An integer with a restricted range
	RI
	10
	n1..n2
	See XSD User Defined Data Types and OWL 1.1

	Reals

	Real Single Precision
	32-bit signed floating point representation
	REAL
	11
	±(2-2-23)2127, also NaN and Inf
	32 bits per IEEE 754

	Real Double Precision
	64-bit signed floating point representation
	DOUBLE
	12
	±(2-2-52)21023, also NaN and Inf
	64bits per IEEE 754

	Strings

	String -8
	String consisting of UTF-8 characters
	U8S
	13
	[UTF-8-code]*
	UTF-8

	String-16
	String consisting of UTF-16 characters
	U16S
	14
	[UTF-16-code]*
	UTF-16

	Restricted String-8
	A string-8 with a specific length restriction ‘n’
	RU8S
	15
	[UTF-8-code]0..n
	UTF-8

	Restricted String-16
	A string-16 with a specific length restriction ‘n’
	RU16S
	16
	[UTF-16-code] 0..n
	UTF-16

	Date and Time

	Date
	Provides the date expressed in year, month, and day
	DATE
	17
	
	See ISO 8601

	Relative Date
	A date since an epoch
	RELDATE
	18
	
	Sequence

	Day
	Day of the month
	DAY
	19
	1-31
	1 octet

	Year Day Time
	UTC form of day of year with time
	YDT
	20
	NA
	UTF-8

See CCSDS 301.0-B-3

	Day of Year
	Day of the year
	YEARDAY
	21
	1..366
	2 octets

	Week
	Week of the year
	WEEK
	22
	1-53
	1 octet

	Month
	Month of the year
	MONTH
	23
	1-12
	1 octet

	Year
	Year in 4 digits
	YEAR
	24
	0000-9999
	2 octets

Table E1-1 Scalar Data Types - concluded

	Data Type
	Description
	Syntax
	Code
	Value Range
	Value Encodings

	Time
	Provides the time expressed in hour and minutes
	TIME
	25
	
	See ISO 8601

	Hour
	Specifies time in hours of a day
	HR
	26
	0-23
	1 octet

	Minute
	Specifies time in minutes of an hour
	MIN
	27
	0-59
	6-bits of an octet

	Second
	Specifies time in seconds of a minute to three decimal places
	SEC
	28
	0.000 - 59.999
	32 bits per IEEE 754

	Relative Seconds
	Number of seconds from epoch of midnight on 6‑January-1980
	RELSEC
	29
	
	See ISO 8601

	Milliseconds
	Time in milliseconds
	MSEC
	30
	
	32 bits per IEEE 754

	Microseconds
	Time in microseconds
	MICROSEC
	31
	
	32 bits per IEEE 754

	Date Time
	Provides the date and time
	DATETIME
	32
	NA
	See ISO 8601

	Coordinated Universal Time
	Coordinated Universal Time (UTC) is a high-precision atomic time standard. UTC has uniform seconds defined by International Atomic Time (TAI)
	UTC
	33
	
	See ISO 8601

	Relative Time
	Time since some designated time
	RELTIME
	34
	NA
	See ISO 8601

	
	
	
	
	
	

E1.1
Enumeration Representation

An enumeration is a set of literals from which a single value is selected. That value is represented as an integer within a standard encoding appropriate to the range of integer values. Consistency of enumeration types will allow them, and the enumerated values, to be referred to unambiguously in all Constellation Systems either through symbolic name or encoding. The symbolic enumerated values are also controlled vocabularies and as such need to be standardized. Note that the codes are simply integer values. No particular representation of them, such as decimal vs. hexadecimal, is specified here.

Some enumeration data types are shown in Table E1.1-1.

Table E1.1-1 Examples of Enumeration Data Types

	Subject
	Parameter/Attribute
	Literal
	Code
	Display Value

	Boolean Data type
	
	OFF
	0
	OFF

	
	
	ON
	1
	ON

	Electrical
	SwitchPosition
	OFF
	0
	OFF

	
	
	ON
	1
	ON

	Hydraulics
	ValvePosition
	OPEN
	0
	OP

	
	
	CLOSED
	1
	CL

	
	
	STUCK-OPEN
	2
	SO

	
	
	STUCK-CLOSED
	3
	SC

	
	
	TRANSITIONING
	4
	TR

	Command Verification
	Verifier Attribute-the status of execution of a command
	Initiated
	0
	IN

	
	
	Transferred
	1
	TR

	
	
	Received
	2
	RX

	
	
	Accepted
	3
	ACK

	
	
	Queued
	4
	QU

	
	
	Execution
	5
	EX

	
	
	Completed - Failed
	6
	CF

	
	
	Completes - Success
	7
	CS

	
	
	Rejected
	8
	REJ

	
	
	
	
	

E1.2
String Representation

Strings take a number of forms depending on the range of characters that are available (e.g., different language alphabets and special symbols) and on the range of admissible characters for string representations of specific types of data (e.g., numeric strings). There are numerous standards in place, ranging from American Standard Code for Information Interchange (ASCII), which is limited to Roman alphabet characters, to Unicode, which is intended to support the full spectrum of natural language alphabets across the world. In addition to the character set standard, which is an assignment of a numerical value to each supported character, there is the issue of transfer encoding, which is the way in which that numerical value itself will be represented in communicated messages, storage, etc.

Strings are represented with Unicode character sets encoded according to either the UTF-8 or UTF-16 standard. UTF-8 includes ASCII, otherwise referred to as IA-5 (International Alphabet 5, as standardized by the International Organization for Standardization [ISO]) as the first 128 values. The Internet Engineering Task Force (IETF) requires all Internet protocols to identify the encoding used for character data with UTF-8 as at least one supported encoding. The Internet Mail Consortium (IMC) recommends that all e-mail programs must be able to display and create mail using UTF-8.

UTF-16 is the native internal representation of text in the Microsoft Windows NT/Windows 2000/Windows XP/Windows CE, Qualcomm BREW, and Symbian operating systems; the Java and .NET byte code environments; Mac OS X's Cocoa and Core Foundation frameworks; and the Qt cross-platform graphical widget toolkit.

E1.3
Integer Representation

Integers are encoded as 8-, 16-, 32-, or 64-bit unsigned integers or signed integers in two's-complement form. This binary encoding is more processing- and space-efficient than encoding the sequence of numeral characters. The length of the integer encoding needs to be explicitly specified to ensure that the encoding is correctly interpreted.

Constellation Systems need to represent integers, in command and control screens and text-oriented documents, as a sequence of binary, octal, decimal, or hexadecimal numerals, indicated respectively by a "b", "o", "d", or "x" at the beginning, with "d" optional as the default, and an optional sign ("+" or "-") immediately preceding a decimal value. Different bases for integers are appropriate in different contexts. The base indicators are in wide use in programming languages. This approach is consistent with common usage in programming language and subsumes XML Schema treatment of integers. In Table E1.3-1, regular expression syntax is used: [...] indicates a choice of a character from the range specified inside the square brackets; ‘?’ indicates that the previous element is optional; ‘+’ indicates that the previous element occurs one or more times.

Table E1.3-1 Integer Representations in different bases

	Base
	Representation
	Examples

	Binary
	0b[0-1]
	0b0

0b1

	Decimal
	[+-]?[0-9]+
	123

-123

	
	[+-]0?d[0-9]+
	0d123

	Hexidecimal
	0x[0-9,A-F]+
	0xAB1F

	Octal
	0o[0-7]+
	0o167

	
	0[0-7]+
	0167

	
	
	

Integers whose permissible values are restricted to a range are represented as data types of integers with restricted range. Examples are an integer that can only have a value between 1 and 100. Conventions for specifying such restrictions are necessary in order to ensure proper interpretation.

E1.4
Floating Point Representation

A real number is represented as a factor, called the mantissa, multiplied by a power (the exponent) of a base. Different bases yield different approximations to real numbers, and conversion between them is limited in accuracy. This representation uses the
IEEE 754 single- and double-precision floating point numbers standard. The Institute of Electrical and Electronics Engineers (IEEE) standard is the most widely used in computer systems. It uses an implicit base of 2, and explicitly specifies the mantissa and the exponent. The main alternative candidate is the Abstract Syntax Notation One (ASN.1) representation, which provides for alternative bases through explicit specification of the base.

E1.5
Time Representation

Time takes a number of forms, depending on the units used (e.g., year, day, minute, millisecond, or combinations thereof) and the origin (i.e., time zero) to which the time value is related.

Data types are specified for various granularities of time indication (Date, Time, Year, Month, Hours, Minutes).

Examples of representations of time are shown in Table E1.5-1.

Table E1.5-1 Time Representations

	Time
	Representation
	Reference

	UTC Day of Year
	YYYY-DDDThh:mm:ss.d→dZ

where each character is an ASCII character using one octet with the following meanings:

YYYY = Year in four-character subfield with values 0001-9999

DDD = Day of year in three-character subfield with values 001-365 or ‑366

"T" = Calendar-Time separator

hh = Hour in two-character subfield with values 00-23

mm = Minute in two-character subfield with values 00-59

ss = Second in two-character subfield with values 00-59

(-58 or -60 during leap seconds)

d→d = Decimal fraction of second in one- to n-character subfield

where each d has values 0-9

"Z" = time code terminator (optional)

Note: the hyphen (-), colon (:), letter "T" and period (.) are used as specific subfield separators, and that all subfields must include leading zeros. As many "d" characters to the right of the period as required may be used to obtain the required precision. An optional terminator consisting of the ASCII character "Z" may be placed at the end of the time code.

Example: 2010-018T17:20:43.123456Z
	CCSDS 301.0-B-3

	UTC Date
	YYYY-MM-DDThh:mm:ss[.d→d] or YYYY-DDDThh:mm:ss[.d→d]

where ‘YYYY’ is the year, ‘MM’ is the two-digit month, ‘DD’ is the two-digit day, ‘DDD’ is the three digit day of year, ‘T’ is constant, ‘hh:mm:ss[.d→d]’ is the UTC time in hours, minutes, seconds, and optional fractional seconds. As many ‘d’ characters to the right of the period as required may be used to obtain the required precision. All fields require leading zeros.

Examples: 2011-11-06T11:17:33 and 2012-204T15:56:23
	

	Relative Time
	Two unsigned 32 bit words in network byte order. The first is the number of seconds from the Constellation (Cx) epoch 1980-01-06 00:00:00 (this is GPS epoch as well). The second is the sub-seconds word (1 bit =~232.83 pico seconds).
	

E2.0
Structured Data Types

Structured data types are shown in the following table. The specific set of data types to be supported and their respective value ranges is TBD.

Table E2-1 Structured Data Types

	Data Type
	Description
	Syntax
	Code
	Value Range
	Value Encodings

	Array
	Multi-dimensional array of elements of scalar types
	ARRAY
	60
	NA
	Sequence

	
	The number of array dimensions are expressed as an unsigned integer (octet)
	DIMENSIONS
	NA
	{1..4}
	8 bits

	
	The data type of the array element is an unsigned integer (octet) referencing the data types of this table
	ELEMENTTYPE
	NA
	{0..31}
	8 bits

	
	Elements are arranged in a sequence with the most significant dimension occurs first
	ELEMENTS
	NA
	Dependent on data type of the element
	Sequence

	Array Index
	A single dimension array that holds unsigned integers as the indices of an array
	ARRAYINDEX
	61
	Each index is an octet with the range {1..255}
	Sequence

	Partial Array
	A partial array is an Array (as defined above) with two attributes that define the starting and ending indices of the elements that are provided
	PARTIALARRAY
	62
	Dependent on data type of the element
	Sequence

	
	Starting index
	STARTINDEX
	NA
	({1..255}, {1..255},
{1..255})
	ARRAYINDEX

	
	Ending Index
	ENDINDEX
	NA
	({1..255}, {1.255},
{1..255})
	ARRAYINDEX

Table E2-1 Structured Data Types - concluded

	Data Type
	Description
	Syntax
	Code
	Value Range
	Value Encodings

	Physical Address
	A physical address provides a low-level mechanism to set and get analog, digital, or memory locations within a system, subsystem, or resource
	PHYSADDR
	63
	
	Sequence

	
	Resource Name
	RESOURCE
	NA
	See section 3.3
	Sequence

	
	Resource Address - an unsigned integer
	ADDRESS
	NA
	0 .. 2^32-1

	4 octets

	
	SubAddress - an unsigned short integer
	SUBADDRESS
	NA
	0 .. 2^16-1
	2 octets

	Containers
	A collection of entities
	CONTAINER
	NA
	Dependent on data type of the element
	Sequence

	Set
	A collection where each element can occur only once
	SET
	NA
	Dependent on data type of the element
	Sequence

appendix f
Constellation System Units

J1. Constellation System Units
C3I’s Units are based on the CxDA Model units ontology which provides a comprehensive reference for the scientific, engineering, and management units that are needed in NASA exploration systems. The intention is for this ontology to serve as the authoritative source for communication and interpretation of units in mission systems, including telemetry. The units ontology is not authoritative in a global sense because various standards organizations are responsible for the standardization and definition of units. The Constellation Data Architecture (CxDA) Model units ontology is, however, based largely on the International Standard for Metric Units (SI), as described in [IEEE/ASTM SI 10 TM – 2002, Standard for the Use of the International System of Units (SI): The Modern Metric System]. In addition, it includes units from other systems, such as British units for length, weight, and heat, and it draws on the SI standard for conversions between these units and their metric counterparts.

The CxDA Model Units ontology supports system interoperability in several ways. First, it provides a formal way of specifying units explicitly, thereby avoiding tacit conventions that are prone to misinterpretation. Second, the ontology explicitly distinguishes between variants of a given unit, for example, day (representing a solar day) and sidereal day. Third, the ontology explicitly distinguishes between units of different types that are commonly referred to with the same name: for example, second as a measure of time, and second as a measure of angle. Fourth, the ontology provides explicit conversion information, serving as a single point of reference for such conversions.

4.8 Unit Data Type

Table F1.1 Unit Data Type

	nasa:Unit
	Type
	Description
	#
	Permissible Values

	nasa:CxID
	Data Type Property
	The Constellation Identifier or CxID, is a long form of a unit name.
	[0..1]
	See CxDA NIR

	nasa:CxSID
	Datatype Property
	The Constellation Short Identifier, CxSID, is an abbreviated identifier for a Unit.
	[0..1]
	See CxDA NIR

	nc:code
	Datatype Property

Functional Property
	Code is a machine processable tag used in software systems such as telemetry and telecomand
	1
	xsd:nonNegativeInteger

	nasa:commonName
	Datatype Property

	Used to store the common english name
	[0..1]
	See CxDA NIR

4.8.1 Derived Unit Data Type

The purpose of having derivational constructs on units is to facilitate the automatic conversion from one unit of measure to another unit of measure. The details of how this is done in CxDA Volume 7: Algorithms and Equations.
Table F1.2 Derived Units Data Type

	units:Derived
	Type
	Description
	#
	Permissible Values

	units:
derivedUsingFactor
	Datatype Property
	A scalar used in the derivation of a derived unit.
	[0..1]
	xsd:double

	units:operand1
	Object Property
	Operand
	1
	units:Unit

	units:operand2
	Object Property
	Operand
	[0..1]
	units:Unit

	units:operator
	Object Property
	Arithmetic Operator
	1
	math:arithmeticOperator

An XML controlled vocabulary of units is part of the CxDA. Sample content of this vocabulary is shown below.

 <NASA-CxDA

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:nasa=https://nst.nasa.gov/esmd/cx/nasa.owl#
 xmlns:units="https://nst.nasa.gov/esmd/cx/unit.owl#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xi="http://www.w3.org/2001/XInclude"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xsi:noNamespaceSchemaLocation="../CxDA-XML-Schemas/CxDA-CxP7004X.xsd">

…

 <units:Unit id="units:GigaHertz" rdfs:label="Giga hertz" nasa:code="3035" nasa:CxSID="GHz"/>

 <units:Unit id="units:Hertz" rdfs:label="Hertz" nasa:code="3020"/>

 ….

 <units:Unit id="units:KiloHertz" rdfs:label="Kilo hertz" nasa:code="3025" nasa:CxSID="KHz"/>

 ….

 <units:Unit id="units:Ampere" rdfs:label="Ampere" nasa:code="0050" nasa:CxSID="A"/>

 …

 <units:Unit id="units:AmperePerSquareMeter" rdfs:label="Ampere per square meter"

 nasa:code="0065" nasa:CxSID="A/m^2"/>

 …

 <units:Unit id="units:Watt" rdfs:label="Watt" nasa:code="1920" nasa:CxSID="W"/>

 …

 <units:Unit id="units:DegreeCentigrade" rdfs:label="Degree centigrade" nasa:code="0520"

 nasa:CxSID=DegC"/>

 ….

Units are provided as a controlled vocabulary at the NExIOM WIKI on ICE at a [TBD] url.]

The full set of units (including non-SI units) are listed alphabetically and assigned numbers starting with 5 and successively incremented by 5. The increment is intended to allow for the insertion of additional units. The assignment is not constrained by the category to which a unit belongs. This is because some units belong to more than one dimension. For example, Joule belongs to ‘EnergyAndWork’ as well as ‘ThermalEnergy.’

4.9 Conditionally Approved NASA Non-SI Units

[TBR: Non-SI units were recently discussed at a “Units Working Group” – the authors of this document have not yet received the conclusions of that working group]Error! Reference source not found. reflects those units that might be used by NASA programs but that do not conform to the SI, including English units and other industry recognized units of measurement. These units SHOULD NOT be used unless they are required to be consistent with hardware or display labeling.

In Table that follows, the columns are as follows:

a. Unit Category – A grouping of units according to a property class.

b. QNAME – A unique identifier that is a URI for the unit. Intended for use in ontologies and XML documents.

c. Unit of Measure – A human-readable name of the unit.

d. Abbreviation – Standardized symbol string for the Unit of Measure. Intended for displays and other documentation needs.

e. Unique Code– A numeric code that uniquely identifies the unit. Intended for use in metadata transmission and in any binary encoding that is required.
Table F1.3 Approved NASA Non-SI Units
	Unit Category
	QNAME
	Unit of Measure
	Abbreviations
	Unique Code

	Absorbed dose
	units:Rad
	Rad
	rad
	1550

	Acceleration
	units:DegreePerSecondSquared
	Degree per second squared
	deg/s^2
	2170

	
	units:FootPerSecondSquared
	Foot per second squared
	ft/s^2
	660

	
	units:Gal
	Gal
	Gal
	705

	
	units:Gravity
	Gravity
	G
	2100

	
	units:GravityPeaktoPeak
	gravity peak to peak
	GPP
	2135

	
	units:InchPerSecondSquared
	Inch per second squared
	in/s^2
	1111

	
	units:KnotPerSecond
	Knot per second
	kt/s
	2115

	
	units:Microgravity
	Microgravity
	microG
	2110

	
	units:MicrogravityPerGravity
	Microgravity per gravity
	microG/G
	2140

	
	units:Milligravity
	Milligravity
	mG
	2105

	
	units:NauticalMilesFootPerSecondSquared
	nautical miles-foot per second squared
	nmi-ft/s^2
	2125

	
	units:RadianPerSecondPerGradient
	radian per second per gradient
	rad/s/grad
	2130

	
	units:SecondSquaredPerFoot
	second squared per foot
	(S^2)/ft
	2145

	Activity
	units:Curie
	Curie
	Ci
	480

	Altitude
	units:Foot
	Foot
	ft
	625

	Altitude
	units:KiloFoot
	kilofoot
	kft
	2165

	
	units:NauticalMiles
	nautical miles
	nm
	1145

	
	units:StatuteMiles
	statute miles
	sm
	2155

	Angle
	units:Degree
	Degree
	deg
	510

	
	units:Gon
	Gon
	gon
	750

	
	units:Grad
	Grad
	grad
	755

	
	units:Grade
	Grade
	gr
	760

	
	units:MilAngle
	Mil angle
	mil
	1135

	
	units:MinuteAngle
	Minute angle
	min
	1195

	
	units:Revolution
	Revolution
	rev
	1575

	
	units:SecondAngle
	Second angle
	s
	1600

	Angular momentum
	units:FootPoundSecond
	foot pound second
	ftlb•s
	2175

	Angular rate
	units:DegreePerHour
	degree per hour
	deg/h
	2181

	
	units:DegreePerSecond
	degree per second
	deg/s
	2180

	Angular strain
	units:DegreePerDegreePerDegree
	degree per degree per degree
	deg/deg^2
	2195

	Angular velocity
	units:DegreePerSecond
	degree per second
	deg/s
	2180

	
	units:GradPerSecond
	grad per second
	grad/s
	2210

	
	units:RevolutionPerMinute
	Revolution per minute
	rev/min
	1580

	
	units:RevolutionPerSecond
	Revolution per second
	rev/s
	1585

	Area

Area

	units:Acre
	Acre
	ac
	40

	
	units:Are
	Are
	a
	90

	
	units:Barn
	Barn
	b
	115

	
	units:CircularMil
	Circular mil
	cmil
	385

	
	units:FootSquared
	foot squared
	ft^2
	2295

	
	units:Hectare
	Hectare
	ha
	785

	
	units:RadianSquared
	radian squared
	rad^2
	2215

	
	units:SquareFoot
	Square foot
	ft^2
	1670

	
	units:SquareInch
	Square inch
	in^2
	1700

	
	units:SquareMile
	Square mile
	mi^2
	1730

	
	units:SquareYard
	Square yard
	yd^2
	1735

	Atomic charge
	units:AtomicNumber
	atomic number
	Z
	2220

	Attitude
	units:Degree
	Degree
	deg
	510

	Attitude rate noise
	units:DegreeSquaredPerSecondCubed
	degree squared per second cubed
	Deg^2/s^3
	2230

	Attitude rate threshold
	units:DegreePerSecond
	degree per second
	deg/s
	2180

	Bandwidth
	units:BitsPerSecond
	bits per second
	bps
	2240

	Bending moment or torque
	units:DyneCentimeter
	Dyne centimeter
	dyn-cm
	565

	
	units:KilogramForceMeter
	Kilogram force meter
	kgf-m
	980

	
	units:OunceForceInch
	Ounce force inch
	ozf-in
	1285

	
	units:PoundForceFoot
	Pound force foot
	lbf-ft
	1420

	
	units:PoundForceInch
	Pound force inch
	lbf-in
	1425

	Brightness
	units:MagnitudeIntensity
	Magnitude intensity
	Mag Inten
	2245

	Capacitance

Capacitance
	units:Abfarad
	Abfarad
	abF
	15

	
	units:Statfarad
	Statfarad
	statF
	1750

	Charge
	units:AtomicNumber
	atomic number
	Z
	2220

	Chemistry
	units:Absorption
	Absorption
	deg/s
	2005

	
	units:PoundMole
	Pound mole
	lb-mol
	1465

	Coefficient of heat transfer
	units:BtuPerHourSquareFootDegreeFahrenheit
	Btu per hour square foot degree fahrenheit
	Btu/(hr-ft^2-degF)
	205

	
	units:BtuPerSecondSquareFootDegreeFahrenheit
	Btu per second square foot degree fahrenheit
	Btu/(s-ft^2-degF)
	245

	Concentration
	units:PartPerBillion
	part per billion
	ppb
	2260

	
	units:PartPerMillion
	part per million
	ppm
	2270

	Conductance
	units:Abmho
	Abmho
	aS
	25

	
	units:Mho
	Mho
	mho
	1120

	
	units:Statmho
	Statmho
	statS
	1760

	Conductivity
	units:MicroreciprocalOhmsPerCentimeter
	Microreciprocal ohms per centimeter
	microMhos/cm
	2275

	Current
	units:Abampere
	Abampere
	aA
	5

	
	units:AmperePerDegree
	Ampere per degree
	A/deg
	2280

	
	units:Biot
	Biot
	Bi
	130

	
	units:Statampere
	Statampere
	statA
	1740

	Cycle type
	units:Cycle
	cycle
	cy
	2285

	Data rate
	units:BitsPerSecond
	bits per second
	bps
	2240

	Dose equivalent
	units:Rem
	Rem
	rem
	1570

	Dynamic viscosity
	units:Centipoise
	Centipoise
	cP
	370

	
	units:Poise
	Poise
	P
	1385

	
	units:PoundForceSecondPerSquareFoot
	Pound force second per square foot
	lbf-s/ft^2
	1455

	
	units:PoundForceSecondPerSquareInch
	Pound force second per square inch
	lbf-s/in^2
	1460

	
	units:PoundPerFootHour
	Pound per foot hour
	lb/(ft-hr)
	1495

	
	units:PoundPerFootSecond
	Pound per foot second
	lb/(ft-s)
	1500

	
	units:SlugPerFootSecond
	Slug per foot second
	slug/(ft-s)
	1655

	Electric charge
	units:Abcoulomb
	Abcoulomb
	abC
	10

	
	units:AmpereHour
	Ampere hour
	A-hr
	55

	
	units:Faraday
	Faraday
	F
	600

	
	units:Franklin
	Franklin
	Fr
	700

	
	units:Statcoulomb
	Statcoulomb
	abC
	1745

	Electric dipole moment
	units:Debye
	Debye
	D
	500

	Electromotive force

Electromotive force
	units:Abvolt
	Abvolt
	abV
	35

	
	units:InverseVolt
	Inverse volt
	1/V
	2340

	
	units:MillivoltAlternatingCurrent
	millivolt alternating current
	mVAC
	2635

	
	units:MillivoltDirectCurrent
	millivolt direct current
	mVAC
	2625

	
	units:Statvolt
	Statvolt
	statV
	1770

	
	units:VoltAlternatingCurrent
	volt alternating current
	VAC
	2630

	
	units:VoltDirectCurrent
	volt direct current
	VAC
	2620

	
	units:VoltRouteMeanSquare
	volt root mean square
	VRMS
	2400

	
	units:VoltagePeakToPeak
	volt peak to peak
	VPP
	2615

	Energy and work
	units:BritishThermalUnitInternationalTable
	British thermal unit international table
	Btu
	145

	
	units:BritishThermalUnitThermochemical
	British thermal unit thermochemical
	Btu
	155

	
	units:CalorieNutritional
	Calorie nutritional
	Cal
	265

	
	units:CalorieThermochemical
	Calorie thermochemical
	cal
	330

	
	units:ElectronVolt
	Electron volt
	eV
	575

	
	units:Erg
	Erg
	erg
	580

	
	units:FootPoundForce
	Foot pound force
	ft-lbf
	670

	
	units:FootPoundal
	Foot poundal
	ft-pdl
	665

	
	units:Kilocalorie
	Kilocalorie
	kcal
	965

	
	units:Kilowatthour
	Kilowatthour
	kW-hr
	1035

	
	units:Quad
	Quad
	quad
	1535

	
	units:ThermEEC
	Therm eEC
	therm
	1820

	
	units:ThermUS
	Therm uS
	therm
	1830

	
	units:TonEnergy
	Ton energy
	t/lbf
	1845

	
	units:TonOfOilEquivalent
	Ton of oil equivalent
	toe
	1865

	
	units:Watthour
	Watthour
	W-hr
	1925

	Energy density
	units:BtuPerPound
	Btu per pound
	Btu/lb
	210

	
	units:CaloriePerGram
	Calorie per gram
	cal/gm
	275

	Energy per unit area
	units:BtuPerSquareFoot
	Btu per square foot
	Btu/ft^2
	250

	
	units:CaloriePerSquareCentimeter
	Calorie per square centimeter
	cal/cm^2
	310

	
	units:FootPoundForcePerSquareFoot
	Foot pound force per square foot
	ft-lbf/ft^2
	690

	Exposure
	units:Roentgen
	Roentgen
	R
	1595

	Flame detection values
	units:PulsesPerSecond
	pulses per second
	pps
	2305

	Flow rate
	units:PoundPerHour
	Pound per hour
	lb/hr
	1510

	Force
	units:Dyne
	Dyne
	dyn
	560

	
	units:KiloPond
	Kilo pond
	kp
	1020

	
	units:KilogramForce
	Kilogram force
	kgf
	975

	
	units:Kip
	Kip
	kip
	1040

	
	units:OunceForce
	Ounce force
	ozf
	1280

	
	units:PoundForce
	Pound force
	lbf
	1415

	
	units:Poundal
	Poundal
	pdl
	1390

	Force per unit length
	units:PoundForcePerFoot
	Pound force per foot
	lbf/ft
	1430

	
	units:PoundForcePerInch
	Pound force per inch
	lbf/in
	1435

	Frequency
	units:Hertz
	Hertz
	Hz
	3020

	Heart rate
	units:HeartBeatsPerMinute
	Heart beats per minute
	BPM
	2335

	Heat
	units:PoundDegreeFahrenheit
	Pound degree fahrenheit
	lb-degF
	1405

	
	units:PoundDegreeRankine
	Pound degree rankine
	lb-degR
	1410

	
	units:PoundMoleDegreeFahrenheit
	Pound mole degree fahrenheit
	lb-mol-degF
	1470

	Heat capacity and entropy
	units:BtuPerDegreeFahrenheit
	Btu per degree fahrenheit
	Btu/degF
	185

	
	units:BtuPerDegreeRankine
	Btu per degree rankine
	Btu/degR
	190

	Heat flow rate
	units:BtuPerHour
	Btu per hour
	Btu/hr
	195

	
	units:BtuPerSecond
	Btu per second
	Btu/s
	235

	
	units:CaloriePerMinute
	Calorie per minute
	cal/min
	290

	
	units:CaloriePerSecond
	Calorie per second
	cal/s
	305

	
	units:TonOfRefrigeration
	Ton of refrigeration
	t/fg
	1870

	Heat flow rate per unit area
	units:BtuPerHourSquareFoot
	Btu per hour square foot
	Btu/(hr-ft^2)
	200

	
	units:BtuPerSecondSquareFoot
	Btu per second square foot
	Btu/(s-ft^2)
	240

	
	units:CaloriePerSquareCentimeterMinute
	Calorie per square centimeter minute
	cal/(cm^2-min)
	315

	
	units:CaloriePerSquareCentimeterSecond
	Calorie per square centimeter second
	cal/(cm^2-s)
	320

	Illuminance
	units:FootCandle
	Foot candle
	fc
	630

	
	units:Phot
	Phot
	ph
	1355

	Inductance
	units:Abhenry
	Abhenry
	abH
	20

	
	units:Stathenry
	Stathenry
	statH
	1755

	Kinematic viscosity
	units:Centistokes
	Centistokes
	cSt
	375

	
	units:SquareFootPerHour
	Square foot per hour
	ft^2/hr
	1690

	
	units:SquareFootPerSecond
	Square foot per second
	ft^2/s
	1695

	
	units:Stokes
	Stokes
	St
	1790

	Length
	units:Angstrom
	Angstrom
	A
	85

	
	units:AstronomicalUnit
	Astronomical unit
	ua
	95

	
	units:Chain
	Chain
	ch
	380

	
	units:Fathom
	Fathom
	fath
	610

	
	units:Fermi
	Fermi
	fm
	615

	
	units:Foot
	Foot
	ft
	625

	
	units:Inch
	Inch
	in
	860

	
	units:KiloFoot
	kilofoot
	kft
	2165

	
	units:LightYear
	Light year
	ly
	1065

	
	units:MegaFoot
	megafoot
	Mft
	2365

	
	units:MicroInch
	Micro inch
	in^-6
	1125

	
	units:Micron
	Micron
	mu
	1130

	
	units:MilLength
	Mil length
	mil
	1165

	
	units:MileInternational
	Mile international
	mi
	1140

	
	units:MileNautical
	Mile nautical
	nmi
	1145

	
	units:MileUSstatute
	Mile uSstatute
	mi
	1160

	
	units:Pica
	Pica
	Pm
	1360

	
	units:Point
	Point
	pt
	1380

	
	units:Rod
	Rod
	rd
	1590

	
	units:Yard
	Yard
	yd
	1975

	Linear energy transfer
	units:KiloelectronvoltPerMicrometer
	kiloelectronvolt per micrometer (micron)
	keV/microM
	2370

	
	units:MegaElectronvoltPerCentimeter
	mega electronvolt per centimeter
	MeV/cm
	2370

	Linear strain
	units:MicroinchPerInch
	Microinch per inch
	microIn/in
	2385

	Logarithmic
	units:Decibel
	decibel
	dB
	505

	Luminance
	units:CandelaPerSquareInch
	Candela per square inch
	cd/in^2
	340

	
	units:Footlambert
	Footlambert
	ft-L
	635

	
	units:Lambert
	Lambert
	L
	1055

	
	units:Stilb
	Stilb
	sb
	1785

	Luminous intensity
	units:Candle
	Candle
	cd
	350

	
	units:Candlepower
	Candlepower
	cd
	355

	Magnetic field strength
	units:AmpereTurnPerInch
	Ampere turn per inch
	A/in
	75

	
	units:AmpereTurnPerInch
	Ampere turn per inch
	at/in
	75

	
	units:AmpereTurnPerMeter
	Ampere turn per meter
	A/m
	80

	
	units:AmpereTurnPerMeter
	Ampere turn per meter
	at/m
	80

	
	units:Oersted
	Oersted
	Oe
	1260

	Magnetic flux
	units:Maxwell
	Maxwell
	Mx
	1085

	
	units:UnitPole
	Unit pole
	U/nWb
	1900

	Magnetic flux density
	units:Gamma
	Gamma
	gamma
	730

	
	units:Gauss
	Gauss
	G
	735

	Magnetomotive force
	units:AmpereTurn
	Ampere turn
	AT
	70

	
	units:Gilbert
	Gilbert
	Gi
	740

	
	units:OerstedCentimeter
	Oersted centimeter
	Oe-cm
	1265

	
	units:UnitPole
	Unit pole
	U/nWb
	1900

	Mass
	units:Carat
	Carat
	Nm/ct
	360

	
	units:Dalton
	Dalton
	Nm/Da
	485

	
	units:Grain
	Grain
	gr
	765

	
	units:HundredWeightLong
	Hundred weight long
	cwt
	850

	
	units:HundredWeightShort
	Hundred weight short
	cwt
	855

	
	units:MetricTon
	Metric ton
	mT
	1115

	
	units:OunceAvoir
	Ounce avoir
	oz
	1275

	
	units:OunceTroy
	Ounce troy
	oz
	1315

	
	units:PennyWeight
	Penny weight
	dwt
	1340

	
	units:PoundAvoirDupois
	Pound avoir dupois
	lb
	1400

	
	units:PoundMass
	Pound mass
	IBM
	2390

	
	units:PoundMass
	Pound mass
	Lbm
	2390

	
	units:PoundMass
	pound mass
	IBM
	2390

	
	units:PoundMass
	pound mass
	Lbm
	2390

	
	units:PoundTroy
	Pound troy
	lb
	1530

	
	units:Slug
	Slug
	slug
	1640

	
	units:TonAssay
	Ton assay
	AT
	1840

	
	units:TonLong
	Ton long
	ton
	1850

	
	units:TonMetric
	Ton metric
	mT
	1860

	
	units:TonShort
	Ton short
	ton
	1880

	
	units:UnifiedAtomicMassUnit
	Unified atomic mass unit
	u
	1895

	Mass per unit area
	units:OuncePerSquareFoot
	Ounce per square foot
	oz/ft^2
	1305

	
	units:OuncePerSquareYard
	Ounce per square yard
	oz/yd^2
	1310

	
	units:PoundPerSquareFoot
	Pound per square foot
	lb/ft^2
	1525

	
	units:SlugPerSquareFoot
	Slug per square foot
	slug/ft^2
	1665

	Mass per unit length
	units:Denier
	Denier
	N/kg
	550

	
	units:PoundPerFoot
	Pound per foot
	lb/ft
	1490

	
	units:PoundPerInch
	Pound per inch
	lb/in
	1515

	
	units:SlugPerFoot
	Slug per foot
	slug/ft
	1650

	
	units:Tex
	Tex
	tex
	1810

	Mass per unit time
	units:PoundPerHour
	Pound per hour
	lb/hr
	1510

	
	units:PoundPerMinute
	Pound per minute
	lb/min
	1520

	
	units:SlugPerSecond
	Slug per second
	slug/s
	1660

	
	units:TonPerHour
	Ton per hour
	ton/hr
	1875

	Mass per unit volume
	units:GrainPerGallon
	Grain per gallon
	gr/gal
	770

	
	units:OuncePerCubicInch
	Ounce per cubic inch
	oz/in^3
	1295

	
	units:OuncePerGallon
	Ounce per gallon
	oz/gal
	1300

	
	units:PoundPerCubicFoot
	Pound per cubic foot
	lb/ft^3
	1475

	
	units:PoundPerCubicInch
	Pound per cubic inch
	lb/in^3
	1480

	
	units:PoundPerCubicYard
	Pound per cubic yard
	lb/yd^3
	1485

	
	units:PoundPerGallon
	Pound per gallon
	lb/gal
	1505

	
	units:SlugPerCubicFoot
	Slug per cubic foot
	slug/ft^3
	1645

	
	units:TonLongPerCubicYard
	Ton long per cubic yard
	ton/yd^3
	1855

	
	units:TonShortPerCubicYard
	Ton short per cubic yard
	ton/yd
	1885

	Mass rate
	units:PoundMassPerHour
	pound mass per hour
	lbm/h
	1511

	
	units:PoundMassPerSecond
	pound mass per second
	bm/s
	2395

	Microbial formation
	units:ColonyFormingUnit
	colony forming unit
	CFU
	2405

	Molar energy
	units:BtuPerPoundMole
	Btu per pound mole
	Btu/(lb-mol)
	225

	
	units:CaloriePerMole
	Calorie per mole
	cal/mol
	295

	Particle energy
	units:Electronvolt
	electronvolt
	eV
	2415

	
	units:KiloElectronvolt
	kilo electronvolt
	keV
	2420

	
	units:Megaelectronvolt
	megaelectronvolt
	MeV
	2410

	Position
	units:Foot
	Foot
	ft
	625

	
	units:FootPerSecond
	Foot per second
	ft/s
	655

	
	units:FootPerSecondSquared
	Foot per second squared
	ft/s^2
	660

	Power
	units:ErgPerSecond
	Erg per second
	erg/s
	585

	
	units:FootPoundForcePerHour
	Foot pound force per hour
	ft-lbf/hr
	675

	
	units:FootPoundForcePerMinute
	Foot pound force per minute
	ft-lbf/min
	680

	
	units:FootPoundForcePerSecond
	Foot pound force per second
	ft-lbf/s
	685

	
	units:Horsepower
	Horsepower
	HP
	805

	
	units:HorsepowerBoiler
	Horsepower boiler
	hp/boiler
	810

	
	units:HorsepowerElectric
	Horsepower electric
	hp/V
	815

	
	units:HorsepowerMetric
	Horsepower metric
	hp/m
	820

	
	units:HorsepowerWater
	Horsepower water
	hp/H2O
	825

	Power density
	units:BritishThermalUnitPerSquareFootPerSecond
	British Thermal Unit per square foot per second
	BTU/ft^2/s
	2425

	Power per unit area
	units:ErgPerSquareCentimeterSecond
	Erg per square centimeter second
	erg/(cm^2-s)
	590

	
	units:FootPoundForcePerSquareFootSecond
	Foot pound force per square foot second
	ft-lbf(ft^2-s)
	695

	
	units:WattPerSquareCentimeter
	Watt per square centimeter
	W/cm^2
	1935

	
	units:WattPerSquareInch
	Watt per square inch
	W/in^2
	1940

	Pressure or stress
	units:AtmosphereStandard
	Atmosphere standard
	atm
	100

	
	units:AtmosphereTechnical
	Atmosphere technical
	at
	105

	
	units:Bar
	Bar
	bar
	110

	
	units:CentimeterOfWater
	Centimeter of water
	cmH2O
	365

	
	units:DynePerSquareCentimeter
	Dyne per square centimeter
	dyn/cm^2
	570

	
	units:FootOfWater
	Foot of water
	ftH2O
	640

	
	units:InchOfMercury
	Inch of mercury
	inHg
	865

	
	units:InchOfWater
	Inch of water
	inH2O
	870

	
	units:KilogramForcePerSquareCentimeter
	Kilogram force per square centimeter
	kgf/cm^2
	985

	
	units:KipPerSquareInch
	Kip per square inch
	kip/in^2
	1045

	
	units:Millibar
	Millibar
	mbar
	1170

	
	units:MillimeterOfMercury
	Millimeter of mercury
	mmHg
	1175

	
	units:PoundForcePerSquareFoot
	Pound force per square foot
	lbf/ft^2
	1445

	
	units:PoundForcePerSquareInch
	Pound force per square inch
	lbf/in^2
	1450

	
	units:PoundPerSquareAbsolute
	pound per square absolute
	psia
	2450

	
	units:PoundPerSquareInch
	pound per square inch
	psi
	2445

	
	units:PoundPerSquareInchDifferential
	pound per square inch differential
	psid
	2290

	
	units:PoundPerSquareInchGauge
	pound per square inch gauge
	psig
	2455

	
	units:PoundalPerSquareFoot
	Poundal per square foot
	pdl/ft^2
	1395

	
	units:Torr
	Torr
	torr
	1890

	Pressure rate
	units:PoundPerSquareInchAbsolutePerMinute
	pound per square inch absolute per minute
	psia/min
	2475

	
	units:PoundPerSquareInchAbsolutePerSecond
	pound per square inch absolute per second
	psia/s
	2480

	
	units:PoundPerSquareInchPerMinute
	pound per square inch per minute
	psi/min
	2465

	
	units:PoundPerSquareInchPerSecond
	pound per square inch per second
	psi/s
	2470

	Quantity
	units:PoundMass
	Pound mass
	IBM
	2390

	
	units:PoundMass
	Pound mass
	Lbm
	2390

	
	units:PoundMass
	pound mass
	IBM
	2390

	
	units:PoundMass
	pound mass
	Lbm
	2390

	RF-Power
	units:Decibel
	decibel
	dB
	505

	
	units:DecibelReferredToOneMilliwatt
	decibel referred to one milliwatt
	dBm
	2500

	Rate invalid threshold
	units:DegreeSquared
	degree squared
	Deg^2
	2485

	Rate threshold
	units:DegreePerSecondSquared
	Degree per second squared
	(deg/s)^2
	2170

	Resistance
	units:Abohm
	Abohm
	abOhm
	30

	
	units:Statohm
	Statohm
	statOhm
	1765

	Respiratory rate
	units:BreathPerMinute
	breath per minute
	breaths/min
	2495

	Rotational rate
	units:DegreePerSecond
	degree per second
	deg/s
	2180

	Seal leak
	units:PoundPerSquareInchDifferential
	pound per square inch differential
	psid
	2290

	Serum also plasma level
	units:InternationalUnitPerLiter
	International Unit per liter
	IU/L
	2515

	Signal detection threshold
	units:DecibelCarrier
	decibel carrier
	dBc
	2520

	Smoke level
	units:PercentObscurationPerFoot
	percent obscuration per foot
	% / ft
	2525

	Specific energy
	units:CaloriePerGramx
	Calorie per gramx
	J/pg
	285

	
	units:ElectronvoltPerNucleon
	electronvolt per nucleon
	eV/n
	2530

	Specific heat capacity
	units:BtuPerPoundDegreeFahrenheit
	Btu per pound degree fahrenheit
	Btu/(lb-degF)
	215

	
	units:BtuPerPoundDegreeRankine
	Btu per pound degree rankine
	Btu/(lb-degR)
	220

	
	units:CaloriePerGramDegreeCelsius
	Calorie per gram degree celsius
	cal/(gm-degC)
	280

	Specific impulse
	units:PoundSecond
	pound second
	lb•s
	2535

	Statistics
	units:Percentile
	Percentile
	% ile
	2540

	Temperature
	units:DegreeCentigrade
	Degree centigrade
	DegC
	520

	
	units:DegreeFahrenheit
	Degree fahrenheit
	degF
	525

	
	units:DegreeRankine
	Degree rankine
	degR
	545

	Temperature rate
	units:DegreeFahrenheitPerMinute
	degree fahrenheit per minute
	deg F /min
	2545

	Thermal conductivity
	units:BtuFootPerHourSquareFootDegreeFahrenheit
	Btu foot per hour square foot degree fahrenheit
	Btu-ft/(hr-ft^2-degF)
	165

	
	units:BtuInchPerHourSquareFootDegreeFahrenheit
	Btu inch per hour square foot degree fahrenheit
	Btu-in/(hr-ft^2-degF)
	175

	
	units:BtuInchPerSecondSquareFootDegreeFahrenheit
	Btu inch per second square foot degree fahrenheit
	Btu-in/(s-ft^2-degF)
	180

	
	units:CaloriePerCentimeterSecondDegreeCelsius
	Calorie per centimeter second degree celsius
	cal/(cm-s-degC)
	270

	Thermal diffusivity
	units:SquareFootPerHour
	Square foot per hour
	ft^2/hr
	1690

	Thermal energy
	units:BritishThermalUnitInternationalTable
	British thermal unit international table
	Btu
	145

	
	units:BritishThermalUnitThermochemical
	British thermal unit thermochemical
	Btu
	155

	
	units:CalorieNutritional
	Calorie nutritional
	Cal
	265

	
	units:CalorieThermochemical
	Calorie thermochemical
	cal
	330

	
	units:Kilocalorie
	Kilocalorie
	kcal
	965

	
	units:ThermEEC
	Therm eEC
	therm
	1820

	
	units:ThermUS
	Therm uS
	therm
	1830

	Thermal insulance
	units:Clo
	Clo
	clo
	390

	
	units:DegreeFahrenheitHourSquareFootPerBtu
	Degree fahrenheit hour square foot per btu
	(degF-hr-ft^2)/Btu
	540

	Thermal resistance
	units:DegreeFahrenheitHourPerBtu
	Degree fahrenheit hour per btu
	degF-hr/Btu
	535

	Thermal resistivity
	units:DegreeFahrenheitHour
	Degree fahrenheit hour
	degF-hr
	530

	
	units:SquareFootPerBtuInch
	Square foot per btu inch
	ft^2/(Btu-in)
	1680

	Thrust to mass ratio
	units:PoundForcePerPound
	Pound force per pound
	lbf/lb
	1440

	Time
	units:Day
	Day
	d
	490

	
	units:DaySidereal
	Day sidereal
	d
	495

	
	units:Hour
	Hour
	hr
	830

	
	units:HourSidereal
	Hour sidereal
	hr
	835

	
	units:MinuteSidereal
	Minute sidereal
	min
	1200

	
	units:MinuteTime
	Minute time
	min
	1205

	
	units:Shake
	Shake
	Sh
	1625

	
	units:Year365Day
	Year (365 Day)
	yr
	1980

	
	units:YearSidereal
	Year sidereal
	yr
	1985

	
	units:YearTropical
	Year tropical
	yr
	1990

	Torque
	units:InchPound
	inch pound
	in-lb
	2555

	Turbidity
	units:NephelometryTurbidityUnit
	nephelometry turbidity unit
	NTU
	2560

	Used with si
	units:Degree
	Degree
	deg
	510

	Velocity
	units:FootPerHour
	Foot per hour
	ft/hr
	645

	
	units:FootPerMinute
	Foot per minute
	ft/min
	650

	
	units:FootPerSecond
	Foot per second
	ft/s
	655

	
	units:InchPerSecond
	inch per second,
	in/s
	2585

	
	units:KilofootPerSecond
	kilofoot per second
	kft/s
	2580

	
	units:KilometerPerHour
	Kilometer per hour
	km/hr
	1015

	
	units:Knot
	Knot
	kn
	1050

	
	units:Mach
	Mach
	mach
	2565

	
	units:MilePerFoot
	mile per second
	mi/s
	2590

	
	units:MilePerHour
	Mile per hour
	mi/hr
	1150

	
	units:MilePerMinute
	Mile per minute
	mi/min
	1155

	
	units:NauticalMilePerHour
	nautical miles per hour
	nm/hr
	2570

	
	units:NauticalMilePerSecond
	nautical miles per second
	nm/s
	2575

	
	units:SecondPerFoot
	second per foot
	s/ft
	2595

	
	units:SecondPerRadian
	second per radian
	s/rad
	2600

	Video frame rate
	units:FramePerSecond
	frame per second
	fps
	3000

	Virtual track
	units:ArcMinutes
	arc minutes
	arcMin
	2610

	
	units:ArcSecond
	arc second
	arcSec
	2605

	Voltage rate
	units:VoltPerCubicFootPerMinute
	volt per cubic foot per minute
	V/ft^3/min
	2640

	
	units:VoltPerSecond
	volt per second
	V/s
	2645

	Volume
	units:AcreFoot
	Acre foot
	ac-ft
	45

	
	units:Barrel
	Barrel
	bbl
	120

	
	units:BoardFoot
	Board foot
	Bf
	135

	
	units:Bushel
	Bushel
	bu
	255

	
	units:Cord
	Cord
	C
	395

	
	units:CubicFoot
	Cubic foot
	ft^3
	425

	
	units:CubicInch
	Cubic inch
	in^3
	440

	
	units:CubicMile
	Cubic mile
	mi^3
	460

	
	units:CubicYard
	Cubic yard
	yd^3
	465

	
	units:Cup
	Cup
	cup
	475

	
	units:GallonImperial
	Gallon imperial
	gal
	710

	
	units:GallonUS
	Gallon uS
	gal
	725

	
	units:Kilogallon
	Kilogallon
	kgal
	2650

	
	units:Liter
	Liter
	L
	1070

	
	units:OunceImperial
	Ounce imperial
	oz
	1290

	
	units:OunceUS
	Ounce uS
	oz
	1320

	
	units:Peck
	Peck
	pk
	1335

	
	units:PintImperial
	Pint imperial
	pi
	1365

	
	units:PintUSdry
	Pint US dry
	dry_pt
	1370

	
	units:PintUSliquid
	Pint US liquid
	pt
	1375

	
	units:QuartUSdry
	Quart US dry
	dry_qt
	1540

	
	units:QuartUSliquid
	Quart US liquid
	qt
	1545

	
	units:Stere
	Stere
	st
	1780

	
	units:Tablespoon
	Tablespoon
	tbsp
	1795

	
	units:Teaspoon
	Teaspoon
	tsp
	1800

	
	units:Ton
	Ton
	T
	1835

	Volume per unit time
	units:CubicFootPerMinute
	Cubic foot per minute
	ft^3/min
	430

	
	units:CubicFootPerSecond
	Cubic foot per second
	ft^3/s
	435

	
	units:CubicInchPerMinute
	Cubic inch per minute
	in^3/min
	445

	
	units:CubicYardPerMinute
	Cubic yard per minute
	yd^3/min
	470

	
	units:GallonPerDay
	Gallon per day
	gal/d
	715

	
	units:GallonPerMinute
	Gallon per minute
	gal/min
	720

4.10 F.2 Approved NASA SI Units

The list of SI Units with their abbreviations and identifier codes is shown in Error! Reference source not found.. The table includes some intermediate units that are used primarily to derive other units. These intermediate units (such as SecondTimeSquared) are grouped with the primary unit from which they are derived (e.g., with SecondTime, under Time), even though they do not represent the same measurement. Units are assigned unique codes starting with 5 and successively incremented by 5. The increment is intended to allow for the insertion of additional units.

In Error! Reference source not found. that follows, the columns are as follows:

a. Unit Category – A grouping of units according to a property class.

b. QNAME – A unique identifier that is a URI for the unit. Intended for use in ontologies and XML documents.

c. Unit of Measure – A human-readable name of the unit.

d. Abbreviation – Standardized symbol string for the Unit of Measure. Intended for displays and other documentation needs.

e. Unique Code – A numeric code that uniquely identifies the unit. Intended for use in metadata transmission and in any binary encoding that is required.
Table F2.1 Approved NASA SI Units
	Unit Category
	QNAME
	Unit of Measure
	Abbreviation
	Unique Code

	Absorbed dose
	units:Gray
	Gray
	Gy
	775

	
	units:GrayPerSecond
	Gray per second
	Gy/s
	780

	Acceleration
	units:MeterPerSecondSquared
	Meter per second squared
	m/s^2
	1110

	
	units:RadianPerSecondSquared
	Radian per second squared
	rad/s^2
	1565

	Activity
	units:Becquerel
	Becquerel
	Bq
	125

	Amount of substance
	units:Mole
	Mole
	mol
	1210

	Angle
	units:Radian
	Radian
	rad
	1555

	
	units:Steradian
	Steradian
	sr
	1775

	Angular velocity
	units:RadianPerSecond
	Radian per second
	rad/s
	1560

	Area
	units:SquareMeter
	Square meter
	m^2
	1705

	Bending moment or torque
	units:NewtonMeter
	Newton meter
	N-m
	1230

	Capacitance
	units:Farad
	Farad
	F
	595

	
	units:MicroFarad
	MicroFarad
	microF
	2655

	
	units:NanoFarad
	NanoFarad
	nF
	2660

	
	units:PicoFarad
	PicoFarad
	nF
	2665

	Catalytic activity
	units:Katal
	Katal
	kat
	925

	Chemistry
	units:MoleKelvin
	Mole kelvin
	mol-K
	1215

	Coefficient of heat transfer
	units:WattPerSquareMeterKelvin
	Watt per square meter kelvin
	W/(m^2-K)
	1955

	Concentration
	units:MolePerCubicMeter
	Mole per cubic meter
	mol/m^3
	1220

	Conductance
	units:Siemens
	Siemens
	S
	1630

	Current
	units:Ampere
	Ampere
	A
	50

	Current density
	units:AmperePerSquareMeter
	Ampere per square meter
	A/m^2
	65

	Dose equivalent
	units:Sievert
	Sievert
	Sv
	1635

	Dynamic viscosity
	units:PascalSecond
	Pascal second
	Pa-s
	1330

	Electric charge
	units:Coulomb
	Coulomb
	C
	400

	
	units:CoulombPerCubicMeter
	Coulomb per cubic meter
	C/m^3
	410

	
	units:CoulombPerSquareMeter
	Coulomb per square meter
	C/m^2
	420

	Electric dipole moment
	units:CoulombMeter
	Coulomb meter
	C-m
	405

	Electricity and magnetism
	units:FaradPerMeter
	Farad per meter
	F/m
	605

	
	units:HenryPerMeter
	Henry per meter
	H/m
	795

	
	units:WattPerSquareMeterSteradian
	Watt per square meter steradian
	W/(m^2-sr)
	1960

	
	units:WattPerSteradian
	Watt per steradian
	W/sr
	1965

	Electromotive force
	units:NewtonPerCoulomb
	Newton per coulomb
	N/C
	1235

	
	units:Volt
	Volt
	V
	1905

	
	units:VoltPerMeter
	Volt per meter
	V/m
	1910

	Energy and work
	units:Joule
	Joule
	J
	885

	Energy density
	units:JoulePerCubicMeter
	Joule per cubic meter
	J/m^3
	890

	
	units:JoulePerKilogram
	Joule per kilogram
	J/kg
	900

	Energy per unit area
	units:JoulePerSquareMeter
	Joule per square meter
	J/m^2
	920

	Exposure
	units:CoulombPerKilogram
	Coulomb per kilogram
	C/kg
	415

	Force
	units:Newton
	Newton
	N
	1225

	Force per unit length
	units:NewtonPerMeter
	Newton per meter
	N/m
	1245

	Heat
	units:KilogramKelvin
	Kilogram kelvin
	kg-K
	990

	
	units:MeterKelvin
	Meter kelvin
	m-K
	1095

	Heat capacity and entropy
	units:JoulePerKelvin
	Joule per kelvin
	J/K
	895

	Heat flow rate
	units:Watt
	Watt
	W
	1920

	Heat flow rate per unit area
	units:WattPerSquareMeter
	Watt per square meter
	W/m^2
	1950

	Illuminance
	units:Lux
	Lux
	lx
	1080

	Inductance
	units:Henry
	Henry
	H
	790

	
	units:MicroHenry
	Micro Henry
	microH
	2675

	
	units:MilliHenry
	Milli Henry
	milliH
	2670

	Kinematic viscosity
	units:SquareMeterPerSecond
	Square meter per second
	m^2/sec
	1720

	Length
	units:Kilometer
	Kilometer
	m
	1091

	
	units:Meter
	Meter
	m
	1090

	Luminance
	units:CandelaPerSquareMeter
	Candela per square meter
	cd/m^2
	345

	Luminous flux
	units:Lumen
	Lumen
	lm
	1075

	Luminous intensity
	units:Candela
	Candela
	cd
	335

	Magnetic flux
	units:Weber
	Weber
	Wb
	1970

	Magnetic flux density
	units:Tesla
	Tesla
	T
	1805

	Mass
	units:Kilogram
	Kilogram
	kg
	970

	Mass per unit area
	units:KilogramPerSquareMeter
	Kilogram per square meter
	kg/m^2
	1010

	Mass per unit length
	units:KilogramPerMeter
	Kilogram per meter
	kg/m
	1000

	Mass per unit time
	units:KilogramPerSecond
	Kilogram per second
	kg/s
	1005

	Mass per unit volume
	units:KilogramPerCubicMeter
	Kilogram per cubic meter
	kg/m^3
	995

	Mechanics
	units:MeterKilogram
	Meter kilogram
	m-kg
	1100

	Molar energy
	units:JoulePerMole
	Joule per mole
	J/mol
	910

	Molar heat capacity
	units:JoulePerMoleKelvin
	Joule per mole kelvin
	J/(mol-K)
	915

	Power
	units:Watt
	Watt
	W
	1920

	Power per unit area
	units:WattPerSquareMeter
	Watt per square meter
	W/m^2
	1950

	Pressure or stress
	units:Pascal
	Pascal
	Pa
	1325

	Resistance
	units:Ohm
	Ohm
	Ohm
	1270

	Space and time
	units:SquareMeterKelvin
	Square meter kelvin
	m^2-K
	1710

	
	units:SquareMeterSteradian
	Square meter steradian
	m^2-sr
	1725

	Specific energy
	units:JoulePerKilogram
	Joule per kilogram
	J/kg
	900

	Specific heat capacity
	units:JoulePerKilogramKelvin
	Joule per kilogram kelvin
	J/(kg-K)
	905

	Temperature
	units:DegreeCelsius
	Degree celsius
	degC
	515

	
	units:Kelvin
	Kelvin
	K
	930

	Thermal conductivity
	units:WattPerMeterKelvin
	Watt per meter kelvin
	W/(m-K)
	1930

	Thermal diffusivity
	units:SquareMeterPerSecond
	Square meter per second
	m^2/sec
	1720

	Thermal energy
	units:Joule
	Joule
	J
	885

	Thermal insulance
	units:KelvinSquareMeterPerWatt
	Kelvin square meter per watt
	(K^2)m/W
	955

	Thermal resistance
	units:KelvinPerWatt
	Kelvin per watt
	K/W
	945

	Thermal resistivity
	units:KelvinMeterPerWatt
	Kelvin meter per watt
	K-m/W
	940

	Thrust to mass ratio
	units:NewtonPerKilogram
	Newton per kilogram
	N/kg
	1240

	Time
	units:SecondTime
	Second time
	s
	1615

	
	units:SecondTimeSquared
	Second time squared
	s^2
	1620

	Velocity
	units:KilometerPerSecond
	Kilometer per second
	m/s
	1106

	
	units:MeterPerSecond
	Meter per second
	m/s
	1105

	Volume
	units:CubicMeter
	Cubic meter
	m^3
	450

	Volume per unit time
	units:CubicMeterPerSecond
	Cubic meter per second
	m^3/s
	455

4.11 F.3 Waived NASA Non-SI Units

The units in Error! Reference source not found. are derived units currently being reviewed by the BIPM for inclusion into the international SI. These derived units are primarily for measurement of electricity.
In Error! Reference source not found. that follows, the columns are as follows:

a. Unit Category – A grouping of units according to a property class.

b. QNAME – A unique identifier that is a URI for the unit. Intended for use in ontologies and XML documents.

c. Unit of Measure – A human-readable name of the unit.

d. Abbreviation – Standardized symbol string for the Unit of Measure. Intended for displays and other documentation needs.

e. Unique Code – A numeric code that uniquely identifies the unit. Intended for use in metadata transmission and in any binary encoding that is required.
Table F3.1 Waived NASA non-SI units

	Unit Category
	QNAME
	Unit of Measure
	Abbreviation
	Unique Code

	Capacitance
	units:MicroFarad
	MicroFarad
	microF
	2655

	
	units:PicoFarad
	PicoFarad
	nF
	2665

	
	units:NanoFarad
	NanoFarad
	nF
	2660

	
	units:Farad
	Farad
	F
	595

	Frequency
	units:MegaHertz
	Mega hertz
	MHz
	3030

	
	units:KiloHertz
	Kilo hertz
	KHz
	3025

	
	units:GigaHertz
	Giga hertz
	GHz
	3035

	
	units:Hertz
	Hertz
	Hz
	3020

	Inductance
	units:MilliHenry
	Milli Henry
	milliH
	2670

	
	units:MicroHenry
	Micro Henry
	microH
	2675

	
	units:Henry
	Henry
	H
	790

appendix G
Constellation Data Architecture System of Registries

Registries take many forms: data and metadata registries, and registries of other types that maintain more extensive, comprehensive and highly-structured content such as knowledge models. The Cx Data Architecture System of Registries (CxDASOR) is a federated set of registries that will serve as the central information base for Constellation. It will primarily consist of an extensive, interrelated collection of ontologies (knowledge) models organized within a corresponding ontology-architecture.

The CxDASOR ontology-based system of registries will manage the terminology and relationships between concepts within the multiple domains of interest to Constellation. CxDASOR serves as the system of record for all detailed definitions of information representation and encoding standards. CxDASOR is a key element of the CxDA Semantic Infrastructure. The objective of the CxDA Semantic Infrastructure is to enable the connectivity of the distributed systems and applications that will be employed throughout the Constellation program to facilitate information access and transfer as well as to identify relationships between names, parts, documents, test results, software, signals, etc.

The first release of a Constellation Registry of Entity Identifiers and Names (CxRIN) will be a logical element of the Constellation Systems of Registries (CxDASOR). CxRIN will provide identification information for engineering and business objects, data types, mnemonics, controlled vocabulary terms, parameters, units of measure and addressing schemas and message structures that C3I uses in its core operations.

The following CxDA names and identifiers will be supported by the CxRIN:

a.
Common Name

Common name is an English Language word or a phrase established as part of NASA nomenclature to ensure uniformity in technical documents, e.g., Altitude Determination and Control System. Other languages may also be supported as needed.

b.
Camel Case Common Name (CxCcCN)

Camel Case Common Name is a single word version of Common Name. It is a representation of a Common Name run together using Camel Case. It is for use in XML schemas and documents.

c.
Constellation Long Identifier (CxLID)

CxLIDs are constructed by transforming Common Names using a set of explicit rules. Spaces are removed, special characters are replaced and words are joined using upper camel case convention. The difference between CxCcCNs and CxLIDs is that upper camel case is required and special rules are used to make certain transformations.

d.
Constellation Short Identifier (CxSID)

To keep name lengths to reasonable limits, CxIDs are constructed using abbreviations of Common Names, called CxSID (Constellation Short Identifiers). These are derived from Common Names by explicit rules, for example, CxSID ‘ADCS’ stands for ‘Attitude Determination & Control System’.

Each type of item used by the program will have a CxSID. CxSIDs are used in construction of CxIDs. When used as part of CxID, CxSIDs often include an occurrence number. For example, ADCS_0.

e.
Constellation Identifier (CxID)

CxID is a unique identifier for an item from a given viewpoint or a cross-cutting of multiple viewpoints. CxID is constructed by taking the CxID of the hierarchical parent of the item and appending CxSID of the item.

For example, ORION_0/CM_0/ADCS_0 is constructed by adding the CxSID of the ‘Attitude Determination and Control System’ to its parent in the Product Breakdown Structure - ORION_0/CM_0 (Orion’ Control Module).

f.
CxCUI

CxCUI stands for Constellation Compact Unique Identifier. It is a fixed-length identifier used for the telemetry/telecommand and derived either algorithmically or through mapping tables from CxID. Any CxID needed for the telemetry/telecommand can be translated into CUI. Similarly, any CUIs must be translatable into CxID. Because of the constraints of fixed length, some of the detail of CxIDs is collapsed in CxCUI. See Appendix K2.0 for CxCUI naming guidance.

g.
CxEID

CxEID stands for Constellation Encoded Identifier. It is an identifier that is derived from or mapped to CxID. Conceptually, CxEID is similar to CxCUI, but it is used in areas other than telemetry and telecommand.

Different Constellation program communities shall have different rules on the format of CxEIDs and permitted characters.

h.
Universal Resource Identifier (URI)

Universal Resource Identifiers are globally unique identifiers foundational to semantic web standards. They do not carry any meaning in terms of the structure of the elements it identifies or organizational contexts or anything of that nature. This is the authoritative internal identifier for all transactions within the Registry. In the Registry, an item identified by its URI has name properties whose values yield the other identifiers (Common Name, CxSID, CxID, CxCUI).

i.
Constellation Display Names (CxDN)

Constellation Display Name is a very short abbreviation for a parameter value. It is used on displays where space is at a premium and visual recognition is crucial. For operator consoles and other displays, a Constellation Display Name, allows for a standardized nomenclature for User Interfaces. Like the CxCUI, it is essential that a CxDN should be traceable to a Constellation Identifier (CxID).

CxRIN will enable creation and management of CxDA names and identifiers. It will provide services for registration and look up of names and identifiers, automated generation of consistent identifiers according to CxDA rules and naming conventions and for translation between different types of identifiers. Specifically one of the CxRIN services will be translation between CxIDs and CxCUIs.

CxDASOR services (including CxRIN) will be accessible by people through web-based user interfaces. There will also be API access for use by the software programs.

CxDASOR will provide capabilities (registry services) that include:

a.
Look up access to the information stored in the registry for people and programs

b.
Data source mapping service to connect external data sources such as relational databases and XML schemas to concepts, relationships and controlled vocabularies held in the registry

Both automated and manual mapping processes will be supported. From any external data source, the system will automatically generate a template mapping and this mapping can then be manually refined.

c.
Data translation service to transform data represented in one mapped format into another mapped format

d.
Data aggregation service to aggregate data from two (or more) mapped data sources

e.
Ontology driven Extensible Markup Language (XML) Schema generation so that tool developers can reuse conceptual structures from the ontologies and simplify mappings

f.
Validation service to ensure that data adheres to standards held in the CxDASOR, for example, uses valid date types or valid units of measure

g.
Extract and download service providing ability to extract subsets of the information held in the registry for use with other programs while preserving identity of the information as specified in the registry

1.
Automatic mapping of database schema information to registry

2.
Automatic generation of XML Schema documents

Specifications of the CxDASOR can be found in CxP 70160 (Baseline Pending), Constellation Program Data Architecture Implementation Plan and its annexes.
appendix H
Information Representation Properties

Information Representation is concerned with the terminology associated with C3I identifier and information data systems, their respective data types and structures, and how C3I is encoded and decoded over telecommunication systems. Each concern needs to be considered with the following properties in mind.

H1.0
Compactness

Compactness refers to the size of the in-memory or otherwise stored representation of an encoding format. Compactness is achieved by ensuring that a format includes as little extraneous information as possible. Extraneous information is any information that is not needed in order to process the format completely and properly. A compact encoding can be achieved in different ways: a number of different techniques such as lossy/loss-less, schema-based/non-schema-based, delta-based/non-delta-based, among others, have been considered. For example, Joint Photographic Experts Group (JPEG) files are an example of a lossy encoding where bits of the original document are thrown away (and cannot be recovered) in order to achieve a compact representation. The same type of lossy encoding could be employed for certain kinds of C3I information entity in order to achieve compactness. Alternatively, differing degrees of compactness can be achieved with a loss-less encoding, whereby redundant information is removed. In this manner no information is lost; however, compactness is achieved through the removal of this redundant information. A loss-less encoding would typically be less compact than a lossy encoding. Furthermore, a schema-based encoding of a C3I information entity can achieve a degree of compactness by using prior knowledge about the structure and content of the information entity. A format is schema-based if it uses information from a C3I schema to achieve a better degree of compactness. This information could be used later as the information entity is processed or reconstituted. It is worth pointing out that, although not self-contained, a schema-based encoding is not inherently lossy given that, in principle, a decoder can reproduce the data model using both the encoding and the schema. Thus, as with other techniques, a schema-based encoding can be lossy or loss-less. Another mechanism to achieve compactness is through a delta-based encoding. Delta-based encodings are generated by comparing an original document with a secondary, reference document. The resulting document is the delta between the original and the reference document. This type of encoding can be lossy or loss-less. In either case, the original document can be reconstituted by using both the delta and the reference document. The advantages of a compact representation are:

a.
Storage: Large Information Entities can be stored in the compact format, thus saving space.

b.
Transmission: Large Information Entities can be transmitted more efficiently when represented in a more compact form, thus saving time. This is especially important when transmitting over low-bandwidth connections. A disadvantage of any compact encoding might be the additional time and Central Processing Unit (CPU) required to generate the encoding.

H2.0
Processing Efficiency

This property refers to the speed at which a new format can be generated and/or consumed for processing. There are three broad areas of processing with regard to an encoding format:

a.
Serialization: The generation of the telemetry, command, and data exchange formats.

b.
Parsing: The reading of the format for processing and extracting information.

c.
Data Binding: The creation of an application data model from the data contained in the format. It is essential that the encoding format be a more efficient manner than is currently allowed with Extensible Markup Language (XML). Not only should it be possible to serialize a message faster than XML, parsing the resulting format must also be faster than parsing XML. Processing efficiency is an end-to-end consideration, from application accessible data on one end to application accessible data on the other end. In other words, it is desirable to have a process that is efficient not only in parsing, but in generation, transmission, and data binding.

H3.0
Processor Requirements

This property refers to the type of processor required for implementing a new format. Establishing the exact footprint of an implementation of a format is impractical due to the number of different programming languages and platforms that are currently available. However, given the specification of a format, it is possible to determine if the format enables the implementation of processors whose footprints are smaller than typical Telemetry and Command processors. This can be accomplished by considering the number and/or complexity of the features that are required (which impacts the size of the code segment) and the amount of data that must be available to a processor in order to support the format (which impacts the size of the initialized data segment).

H4.0
Efficient Serialization/DeSerialization

A format is directly readable and writable if it can be serialized from an instance of a data model and parsed into an instance of a data model without first being transformed to an intermediate representation. Formats that are directly readable and writable generally make more efficient use of available memory and processor resources than those that are not. In addition, they sometimes have better streaming characteristics. The parser for a directly readable format can parse the format into an instance of the data model in one logical step. Likewise, the serializer for a directly writable format can serialize an instance of the data model in one logical step. In contrast, a parser for a format that is not directly readable must transform the original format into the intermediate format before it parses the intermediate format into an instance of the data model. Likewise, the serializer for a format that is not directly writable must serialize an instance of the data model into the intermediate format before it transforms the intermediate format to the target format. Unless the order and organization of items in the intermediate format correspond closely to order and organization of corresponding items in the target format, the required transformations will negatively impact streaming. An example of a format that is not directly readable and writable is a g-zipped XML stream. To create an instance of a data model from a g-zipped XML stream, the stream must be decompressed to XML format, then parsed into the data model. Likewise, to create a g-zipped XML stream from an instance of a data model, the data model must be serialized to XML format, then compressed. The compression and decompression steps require additional processor and memory resources above and beyond that required to parse and serialize the XML format. In addition, the two-step process limits streaming.

H5.0
Fragmentable

A format is said to be fragmentable when it supports the ability to encode instances that do not represent the entirety of a document together with sufficient context for the decoder to process them in a minimally meaningful way. While typical usage of XML involves exchanging entire documents (the special case of external parsed entities notwithstanding), it is sometimes desirable to support the ability to exchange smaller, independently exploitable parts of a document. The presence of this property largely facilitates a variety of other properties of a format and processing tasks that may be performed on top of a document such as the transmission of deltas, error resilience mechanisms, improved access times, or the prioritized transmission of document parts.

H6.0
Embedding Support

A format supports embedding to the extent to which it provides for the interchange and management of embedded files of arbitrary format. A variety of C3I Interoperability Requirements calls for the inclusion of files of one type inside another: images, video, and sound embedded within multimedia documents; arbitrary files inside messages; large datasets bundled with metadata. File formats vary in their support for this use. Formats designed for narrowly constrained purposes, such as Graphic Interchange Format (GIF), typically make no provision for embedding. While it may be possible to encode some additional data in certain metadata fields within such formats, doing so violates the spirit of the file format and requires tight agreement between the sender and receiver for interchange. Such formats effectively offer no interchange or management support and are not considered to support embedding. Other formats, such as XML and Tagged Image File Format (TIFF), permit embedding simply by virtue of flexibility; they do nothing to prevent file embedding. However, because these formats have no mechanism for distinguishing an embedded file from other types of data, tight agreement is still required between the sender and the receiver for interchange. Such mechanisms are also not easily manageable. XML falls somewhere between these first two cases. It is flexible enough to allow the embedding of files, but only if those files consist entirely of character data. Embedding binary data requires an additional agreement as to how it is encoded as character data; e.g., via base64 encoding. This also imposes a penalty on both compactness and processing speed. Other formats, such as Extensible Stylesheet Language - Formatting Object (XSL-FO) and Portable Document Format (PDF), provide specific embedding points. For example, XSL-FO defines the instream-foreign-object system for embedding objects which are in a non‑XSL-FO namespace. By establishing a general mechanism, they make embedded data interchangeable and manageable because there is an a priori agreement for creating and identifying embedded files. Finally, there are packaging formats, such as Multipurpose Internet Mail Extension (MIME) multipart/related and ZIP, which exist solely for the purpose of containing embedded files. Packaging formats generally provide significant management capabilities by supporting metadata, signatures, encryption, and compression of embedded files. They are typically designed specifically for the interchange of these embedded files. Evaluation of a format for embedding support should take into account both interchange and manageability, as described here, as well as support for related properties like Compactness, Random Access, Signable, Encryptable, and Streamable.

H7.0
Encryptable

A format is encryptable to the extent to which it makes the encryption and decryption of a file straightforward and interoperable. In principle, any file format is encryptable in that the bytes which compose any file may be fed to an encryption algorithm. Encryption capabilities, however, are most useful when the encryptor and decryptor can agree upon which algorithm was used and which portions of the file are encrypted. Formats vary in how amenable they are to specifying and maintaining this information, and this in turn can be a measure of how "encryptable" they are.

H8.0
Partial Encryption

It is often desirable to encrypt only a portion of a file. In the most basic use of this capability a file may contain unencrypted data regarding the encryption algorithm and parameters used for the remainder of the file. This can promote interoperability, as described below. In other situations it is desirable to leave certain metadata (e.g., Simple Object Access Protocol [SOAP] headers or Extensible Metadata Platform [XMP] packets) unencrypted but encrypt the remainder of the document in order to permit certain routing or query functions to be performed by intermediaries. In the case of compound documents it is sometimes desirable to leave the metadata of each embedded document unencrypted while encrypting the remainder of the document. Other things being equal, formats which place all bytes representing the encoding of data model constructs (such as SOAP headers) in a contiguous byte range better support partial encryption because those ranges are more easily determined and specified. We say such formats are "more encryptable." Formats which permit such ranges to be created but do not guarantee them are less encryptable because the application must either determine all ranges which must be encrypted or arrange for that information to be placed in a contiguous byte range. Finally, there are formats which will never place data model constructs in contiguous ranges but scatter that information into tables and other mechanisms used to achieve compactness or other format properties. For example, a format may place system names in a vocabulary index table. That table may contain names of some systems in the encrypted region and others which are not; one must then determine how much of the table to encrypt. Such formats are least encrypted with respect to partial encryption.

H9.0
Encryption Interoperability

Encryptors must be able to communicate to decryptors which portions of a file are encrypted and by what mechanism. Other things being equal, formats which make no provisions for recording this information are less encryptable because they require additional agreement between the parties involved in order to make encryption interoperate. Formats may provide syntax for encoding this information in the file format itself. Such formats are more encryptable because interoperable encryption support can be created simply by reference to the format itself; no additional agreements with decryptors are required.

H10.0
Content Type Management

A format integrates into the media type and encoding infrastructure if it defines one or more media types and/or encodings for itself as well as the way in which they should be used. The media type and encoding infrastructure provides for a common and simple way of identifying the contents of a document and the content coding with which it is transmitted. It is fundamental to the functioning of the Web and enables powerful features such as content negotiation. While required for the Web, these mechanisms are not specific to it and are typically reused in many other situations. It is, therefore, desirable that formats meant to be used on the Web define (and preferably register) the media type and/or encoding that one is to use when transmitting them. There are multiple ways in which an alternate XML format could define how media types and encodings are to be used with it. Several options of note and their associated trade-offs are: the alternate XML serialization which is considered to just be a content coding. In this case, it may have a media type (as gzip does with 'application/gzip' in addition to the 'gzip' content coding), but the principal way of using it is to keep the original media type of the XML content and only change the content coding. With this approach, content negotiation is fully possible. The behavior of fragment identifiers does not need to be re-specified. The alternate XML format is not a mere content coding but requires the definition of one or more media types. This case subdivides into two options. There is only the alternate XML format's media type. Any content sent using that format must have that media type. The upside of this approach is that it is simple. The downside is that you lose all media type information of the original XML content so that you must then define another system to provide that information, or define new media types for all possible content (application/binxhtml, image/binsvg, etc.). With this content, negotiation is entirely impossible (or rather, totally useless) unless new media types are defined for all things XML. The behavior of fragment identifiers becomes impossible to specify, or has to be re-specified for all the new media types. A new media type suffix is defined in the manner that it was done for XML content (e.g., "+bix") to be used for all content expressed using the alternate XML serialization. The upside of this approach is that it is simple and that the diversity of media types is maintained. The downside is that it requires much more intrusive modifications to systems that rely on existing media types. With this content, negotiation is possible, but with lesser power. The behavior of fragment identifiers has to be re-specified to map back to the one in +xml types.

appendix I
XTCE REQUIRED PRACTICES

This appendix describes how Constellation systems will use the XML Telemetric and Command Exchange (XTCE) to insure interoperability for the telemetry and command attributes described in Sections 3.4.2, 3.4.3, and 3.4.4 of this document. XTCE is a CCSDS standard XML Schema for describing a wide variety of spacecraft and ground system telemetry and command attributes. The flexibility within the XTCE Schema makes it highly adaptable, but that adaptability can cause interoperability problems if Constellation systems choose different options within XTCE. Therefore the required practices contained in this appendix constrain XTCE usage to ensure that a Constellation system can exchange telemetry and command information with any other Constellation systems with complete confidence.

These required practices are not intended to replace XTCE documentation available elsewhere. While some of the text in this document may help explain XTCE concepts, it is expected that the reader of the document will already be familiar with the XTCE standard and comfortable with XML.

The document describes these constraints by following the structure of the XTCE Schema starting at the first or root element and following down through each subsequent child element and attribute relevant to Constellation. In some cases the XTCE element or attribute may be used exactly as described by the XTCE Schema. In other cases, the element or attribute may be restricted to certain values or disallowed altogether. If a default value of an optional element or attribute is the only allowed value for Constellation, then the element or attribute will not be allowed by the required practices.

XTCE does not natively support some of the capabilities needed for Constellation. In order to support them, certain features available within XTCE have been minimally extended. In many instances these extensions only require taking advantage of the XTCE element for describing ancillary data items. The use of ancillary data is restricted to only those items described in this document along with the behavior specified for the ancillary data items.

All XML files generated by following these required practices will validate against the XTCE Schema using XML validation, but enforcing the additional constraints imposed by them will require Constellation specific validation. In all instances the Constellation required practices are consistent with the concepts of the XTCE standard.

At the end of the appendix are two sets of tables to help navigate the required practices. The first set of tables (see Section I7.1.1) is a summary of all the required practices contained in the text. This summary is also organized by the structure of the XTCE Schema, but may be easier to navigate when needing information about a single element or attribute. The second set of tables (see Section I7.1.2) maps the telemetry and command attributes found in sections 3.4.3 and 3.4.4 to the XTCE Schema. These tables will help transition from the defined attributes to the actual XTCE document.

I1.0 The SpaceSystem Element

The SpaceSystem is the root element of all XTCE instance documents and contains several elements for describing telemetry and command descriptions. Immediate child attributes and elements are associated with documentation and document management. Additional SpaceSystems may also be defined recursively so that a hierarchical-tree definition may be created that matches either a logical or physical view of a particular space system.

The simplest valid XTCE document is very short and contains little information:

<xtce:SpaceSystem
name="UpperStage"

xsi:schemaLocation="http://www.omg.org/space/xtce SpaceSystemV1.1.xsd" xmlns:xtce=http://www.omg.org/space/xtce
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
The XTCE schema location (xsi:schemaLocation) is required to be set as shown above. Only version 1.1 of the schema should be used.

The xmlns:xtce attribute is required to be set in the Schema header as shown above; it ensures each element in an XTCE file will start with “xtce:”.
The XML Schema instance (xmlns:xsi) is required to be set as shown above.

I1.1 name Attribute

The name attribute identifies a SpaceSystem. Constellation missions must follow the naming guidelines set forth in Appendix G. The SpaceSystem attribute name will be a Camel Case Common Name (CxCCCN). The following example shows the use of the camel case name technique.

<xtce:SpaceSystem name="FirstStage">
 <xtce:SpaceSystem name="AvionicsSystem"/>
</xtce:SpaceSystem>
I1.2 shortDescription Attribute

The shortDescription attribute is an optional summary description of the SpaceSystem limited to 64 characters.

I1.3 LongDescription

The LongDescription element is an optional complete description of the SpaceSystem limited to 1024 characters.
I1.4 Header

The SpaceSystem element Header contains several documentary oriented elements important to Constellation Missions. The Header is required only for the root SpaceSystem element.
I1.4.1 version Attribute

The version attribute is left to the end user to define in XTCE; a three-number version system will be used Constellation Missions. The first number represents the major release of the file; the second number represents the minor release, and the final number represents bug fixes or micro releases. The three version fields are separated by a period (Major.Minor.Micro).

The major number for pre-release documents is zero. Document versions are controlled by the issuers of the document.

I1.4.2 date Attribute

The date attribute for Constellation missions must be in the YYYY-MM-DD format. The date is set by the document author.

I1.4.3 classification Attribute

The classification attribute is used to specify the availability of Constellation documents. Constellation missions will classify XTCE documents as follows:

Public – the document is available to anyone.

NASA – the document may only be release within NASA.

Constellation – the document may only be released within Constellation.
I1.4.4 validationStatus Attribute

The following validationStatus values are defined for Constellation missions and will be used to annotate the validationStatus within XTCE documents:

Working – version must be 0.y.z, y >= 1, z >= 0

Draft – version must be 0.9.z, z >= 0

Release – version must be x.y.z, x >= 1, y >= 0, z >= 0

Withdrawn – version irrelevant

I1.4.5 AuthorSet

The point of contact for the XTCE file should be placed within the AuthorSet element. The Author(s) should use their names, phone numbers, and email address. For example,

<xtce:SpaceSystem name="CrewExplorationVehicle">
 <xtce:Header>
 <xtce:AuthorSet>
 <xtce:Author>John Doe, (555)555-5555 john.doe@nasa.gov</xtce:Author>
 </xtce:AuthorSet >
 </xtce:Header >
</xtce:SpaceSystem>
I1.4.6 NoteSet

The NoteSet element allows capturing of notes associated with the file, such as Dublin Core type metadata not otherwise specified in the file. The note contents are set at the discretion of the authors and may be ignored by consumers.

I1.4.7 HistorySet

The HistorySet element allows the capture of document creation history; it is set at the discretion of the authors and may be ignored by consumers.

I1.5 Child SpaceSystem – SpaceSystem Hierarchy

Child SpaceSystem elements are required to have their name attributes set.

Within the entire XTCE document for any number of SpaceSystem(s), the classification must be consistent, although not necessarily the same. The top-level root SpaceSystem classification must be greater than or equal to the classification lower child SpaceSystems.

The usage of the hierarchy is left up to Constellation users to determine as best matches their needs; a simple example is as follows:

<!-- Note: Example is for illustrative purposes and does not follow required practices. -->
<xtce:SpaceSystem name=”CrewExplorationVehicle”>
 <xtce:SpaceSystem name=”CommandAndDataHandling”/>
 <xtce:SpaceSystem name=”ElectricalPowerSubsystem”/>
</xtce:SpaceSystem>
For Constellation one possible usage would to represent major spacecraft physical or logical “infrastructure”.

I1.6 Common Elements for NameReferences

A NameReference in XTCE is used to refer from one area in an XTCE document to another area, for example a Parameter defined in ParameterSet refers to a ParameterType in ParameterTypeSet using a NameReference.

A NameReference may refer to items in the local SpaceSystem or in other SpaceSystems.

The rules governing NameReferences are as follows:

· If a NameReference is the name of the item being refered to only, it is called an unqualified NameReference. Unqualified NameReferences refer to:

· An item in the local SpaceSystem, or if it is not found

· Parent SpaceSystems are searched up the hierarchy until the item is found.

· If a NameReference consists of the name of the item and a path, it is called a qualified NameReference. A qualified NameReference refers to an item specifically pointed to by the path and no other item.
For qualified NameReferences, the path portion is formed with a Unix-like filename construct consisting of SpaceSystem names separated by “/”, “.” or “..” characters.

These NameReference properties mean the following XTCE elements really form one area, even though they are split between TelemetryMetaData and CommandMetaData:

· TelemetryMetaData/ParameterSet and CommandMetaData/ParameterSet are one area.

· TelemetryMetaData/ParameterTypeSet and CommandMetaData/ParameterTypeSet are one area.

· TelemetryMetaData/ContainerSet, CommandMetaData/CommandContainerSet, and CommandMetaData/MetaCommand/CommandContainer form one area; although in practice it is said the MetaCommand/CommandContainer is ‘hidden’ from the ContainerSets (a NameReference does not itself differentiate between them).
In order to help alleviate the confusion this may cause, these qualified names will be managed for Constellation according to a simple set of rules:

1. All Parameters, ParameterTypes, Containers, CommandContainers, MetaCommands, MetaCommand/CommandContainers, ArguementTypes, and Agruments must have a unique name in the entire XTCE document.

2. Parameters, Containers, CommandContainers, MetaCommand/CommandContainers, and Arguments will be named using a CxCUI unless explicitly called out in these required practices.

3. Any single use (non-shared) ParameterType or ArgumentType will be specified by concatenating the CxCUI name with the word “Type”.

4. Any shared ParameterType or ArgumentType will be specified at the discretion of the user as long as the name remains unique within the XTCE document.

I1.7 Example

The following example shows the use of the SpaceSystem, its header elements and child SpaceSystem elements using Constellation mission Camel Case Common Name from Appendix G. The example contains one parameter but leaves out all the information associated with that parameter for simplicity. In addition the name reference in parameterTypeRef is unqualified.

<xtce:SpaceSystem
xsi:schemaLocation=http://www.omg.org/space/xtce SpaceSystemV1.1.xsd xmlns:xtce="http://www.omg.org/space/xtce"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
name="CrewExplorationVehicle"
shortDescription="Orion spacecraft">
 <xtce:LongDescription>
This examples shows the major elements and attributes
needed by Constellation XTCE documents
 </xtce:LongDescription>
 <xtce:Header validationStatus="Draft"
classification="Public"
 classificationInstructions="do not distrubute outside Constellation"
date="2007-10-24" version="0.9.1">
 <xtce:AuthorSet>
 <xtce:Author>John Doe, (555)555-5555, john.doe@nasa.gov</xtce:Author>
 </xtce:AuthorSet>
 <xtce:NoteSet>
 <xtce:Note>Example shows a spacecraft hierarchy and related naming for a parameter</xtce:Note>
 <xtce:Note>This element can be used to contain other user definable file information.</xtce:Note>
 </xtce:NoteSet>
 <xtce:HistorySet>
 <xtce:History>Initial Version</xtce:History>
 </xtce:HistorySet>
 </xtce:Header>
 <xtce:SpaceSystem name="ElectricalPowerSubsystem">
 <xtce:TelemetryMetaData>

 <xtce:ParameterTypeSet>

 <xtce:IntegerParameterType name=" MyCUINameType ">

 <xtce:UnitSet/>

 <xtce:IntegerDataEncoding/>

 </xtce:IntegerParameterType>

 </xtce:ParameterTypeSet>

 <xtce:ParameterSet>
 <xtce:Parameter name="MyCUIName" parameterTypeRef="MyCUINameType"/>

 </xtce:ParameterSet>
 </xtce:TelemetryMetaData>
 </xtce:SpaceSystem>
</xtce:SpaceSystem>
I2.0 Parameters and ParameterTypes

Parameters and ParameterTypes are used in both telemetry and command metadata. Unless otherwise specified, the rules described in this section apply to both commanding and telemetry.

I2.1 ParameterTypeSet

ParameterTypes are defined in ParameterTypeSet and contain most of the descriptive information about telemetry and command parameters. Many of the ParameterTypes are similar to each other as they were constructed using the same Schema-types, and follow a similar pattern consisting of a documentation area, an encoding area, and an alarm area. Within the encoding area is a calibration area.

The ParameterType defines the relationship between the encoded bits in the Data Exchange Message and the host (local computer). For telemetry ParameterTypes the relationship can be represented as:

DEM encoding (calibration (optional) (host variable type (alarm (optional)

For command ParameterTypes the relationship can be represented as:

host variable type (calibration (optional) (DEM encoding

Each ParameterType has different possible encodings for Constellation Missions as defined in Section I2.1.1.

The Calibrators and Alarms also vary slightly by ParameterType. Calibrators are defined in Section I2.1.7. Alarms are used only for telemetry ParameterTypes and are defined in Section I2.1.8.

The next section, I2.1.1, describes the attributes and elements that are common to all ParameterTypes. The subsequent sections describe attributes and elements that are unique to each ParameterType.

I2.1.1 Common ParameterType Attributes and Elements

These attributes and elements are common to many of the parameter types used by Constellation. The defined rules apply to all parameter types.

I2.1.1.1 name Attribute

If a one-to-one relationship exists between ParameterTypes and Parameters, the name for the ParameterType should be the Parameter name with “Type” added to the end. A ParameterType may be used by multiple parameters, but the document author must guarantee the shared name is unique.
I2.1.1.2 shortDescription Attribute

The shortDescription is an optional summary description of the type limited to 64 characters.
I2.1.1.3 LongDescription

The longDescription is an optional complete description of the type limited to 1024 characters.
I2.1.1.4 AncillaryDataSet
No ancillary data are defined for ParameterTypes unless specified in the ParameterType sections below. The AncillaryDataSet element should not be included if no ancillary data items are defined.

I2.1.1.5 UnitSet

Units are defined in the UnitSet element within each ParameterType. It is a required element in order for XTCE files to validate, but it may have empty content.

I2.1.1.5.1 Unit

For Constellation, the Unit will hold the QNAME defined in the tables of Appendix F.

I2.1.1.5.1.1 description Attribute

The description attribute will contain the abbreviation of the unit from Appendix F.

I2.1.1.5.2 Example

The following example shows the proper use of the UnitSet.
<xtce:UnitSet>
 <xtce:Unit description="A/m^2">units:AmperePerSquareMeter</xtce:Unit>
</xtce:UnitSet>
I2.1.1.6 Encodings

The encoding elements describe bits as they appear within a DEM. A few attributes and elements are common to most of the encoding elements and are described here. The four supported encodings for Constellation Missions ParameterTypes are shown after the common section.

I2.1.1.6.1 Common Data Encoding

The common portions of the encoding types used by Constellation are as follows. Any specified rules apply to all encoding types.

I2.1.1.6.1.1 bitOrder Attribute

Use default bitOrder (mostSignificantBitFirst); do not specify.

I2.1.1.6.1.2 ByteOrderList

Use default ByteOrderList (Big Endian); do not specify.

I2.1.1.6.1.3 Default Calibrator

Calibrators for encoding types are defined using the DefaultCalibrator element. If no calibrator is defined, then the DefaultCalibrator is not specified. The calibrator descriptions are described in Section I2.1.7.
I2.1.1.6.1.4 ContextCalibratorList

Context calibrators are not supported at this time. Do not specify.
I2.1.1.6.2 StringDataEncoding

Constellation supports UTF-8 and UTF-16 encoded strings. Common data encoding required practices are defined in Section I2.1.1.6.1.

I2.1.1.6.2.1 encoding Attribute

UTF-8 or UTF-16 may be specified as the encoding value.

I2.1.1.6.2.2 SizeInBits

Only the Fixed/Fixed Value element of SizeInBits is supported. The length is in bits.

I2.1.1.6.3 FloatDataEncoding
Constellation supports 32-bit or 64-bit IEEE floating point numbers. Common data encoding required practices are defined in Section I2.1.1.6.1.
I2.1.1.6.3.1 encoding Attribute

The encoding default value of IEEE754_1985 is supported. Use the default, do not specify.

I2.1.1.6.3.2 sizeInBits Attribute

The default value of sizeInBits is 32. Do not specify for single precision floats. Set to 64 for double precision.

I2.1.1.6.4 IntegerDataEncoding

Unsigned integer and signed two’s complement integers up to 64 bits are supported for Constellation. Common data encoding required practices are defined in Section I2.1.1.6.1.

I2.1.1.6.4.1 encoding Attribute

If specifying unsigned integers, use the default encoding and do not specify. For signed integers, set the encoding to twosCompliment.

I2.1.1.6.4.2 sizeInBits Attribute

The valid value of sizeInBits is 1 to 64 for unsigned integers and 2 to 64 for signed integers. When the default value of 8 bits is used; it does not need to be specified.

I2.1.1.6.5 BinaryDataEncoding

Binary data encoding is used to describe data that should be interpreted only as a collection of bits (binary blob) by the processing system.

I2.1.1.6.5.1 SizeInBits

Only the Fixed/FixedValue element of SizeInBits is supported. The length is in bits.

Note: There is a single exception to this rule. DynamicValue is allowed for the ContentMapID as described in Section I3.2.2. All other binary data encoded parameters must use fixed value lengths.

I2.1.1.7 DefaultAlarm

Integer, floating point, and enumerated telemetry ParameterTypes can have a DefaultAlarm in Constellation. If no alarm is defined, then do not specify. These alarms are slightly tuned to each ParameterType. The alarm description options are described in Section I2.1.8.

No alarms are defined for command ParameterTypes.
I2.1.1.8 ContextAlarmList

Context alarms are not supported at this time. Do not specify.

I2.1.2 StringParameterType

The StringParameterType has the following unique element.

I2.1.2.1 initialValue Attribute

The initialValue attribute provides an optional value for the StringParameterType which may be overridden when the initialValue attribute is set for the Parameter.
I2.1.3 EnumeratedParameterType

The EnumeratedParameterType has the following unique elements.

I2.1.3.1 initialValue Attribute

The initialValue attribute provides an optional value for the EnumeratedParameterType which may be overridden when the initialValue attribute is set for the Parameter. For a telemetry EnumeratedParameterType, the initialValue must be one of the Enumeration values in the EnumerationList. For a command EnumeratedParameterType, the initialValue must be one of the Enumeration labels in the EnumerationList.
I2.1.3.2 EnumerationList

The EnumerationList contains all of the valid Enumerations for the parameter type.
I2.1.3.2.1 Enumeration

The Enumeration correlates a single value to a label. Telemetry ParameterTypes may have multiple values associated with the same label. However, command ParameterTypes must have only one value per label.
I2.1.3.2.1.1 value Attribute

The value is the unsigned integer value associated with an enumeration label.
I2.1.3.2.1.2 label Attribute

The label is the string value to associate with an unsigned integer.
I2.1.4 IntegerParameterType

The IntegerParameterType has the following unique elements.

I2.1.4.1 validRangeAppliesToCalibrated Attribute

The valid ranges for telemetry ParameterTypes will always apply to the encoded value and this attribute must be set to false.

Command ParameterTypes can have the ranges applied to the encoded or calibrated values. If the ranges are to be applied to the encoded value, then this attribute must be set to false. Otherwise, the default value of true is used and the attribute should be omitted.

I2.1.4.2 initialValue Attribute

The initialValue attribute provides an optional value for the IntegerParameterType which may be overridden when the initialValue attribute is set for the Parameter. For a telemetry IntegerParameterType and an uncalibrated command IntegerParameterType, the initialValue must meet the criteria specified for a FixedIntegerValueType in XTCE. For a calibrated command IntegerParameterType, the initialValue must meet the criteria specified in the built-in float type.
I2.1.4.3 sizeInBits Attribute

The sizeInBits attribute is set according to the data defined in Table I2.2.1-1.
I2.1.4.4 signed Attribute

The signed attribute
should be set to false when the encoded data is an unsigned integer. Otherwise, it is omitted.

I2.1.4.5 AncillaryDataSet
For command ParameterTypes the LimitType ancillary data items is defined.

There are no ancillary data items defined for telemetry ParameterTypes and the AncillaryDataSet element should not be included.

I2.1.4.5.1 LimitType

The LimitType ancillary data item is set to inclusive to indicate that the nominal range is between the minimum and maximum values specified. If set to exclusive, any value between the minimum and maximum values is off-nominal.
I2.1.4.6 ValidRange

The ValidRange specifies the expected range for the ParameterType.
I2.1.4.6.1 minInclusive Attribute

The minInclusive attribute is the minimum expected value for the ParameterType.
I2.1.4.6.2 maxInclusive Attribute

The maxInclusive attribute is the maximum expected value for the ParameterType.
I2.1.5 BinaryParameterType

The BinaryParameterType has the following unique element.

I2.1.5.1 initialValue Attribute

The initialValue attribute provides an optional value for the BinaryParameterType which may be overridden when the initialValue attribute is set for the Parameter. The initialValue must meet the criteria specified in the XTCE BinaryType or HexadecimalType.
I2.1.6 FloatParameterType

The FloatParameterType has the following unique elements.

I2.1.6.1 validRangeAppliesToCalibrated Attribute

The valid ranges for telemetry ParameterTypes will always apply to the encoded value and this attribute must be set to false.

Command ParameterTypes can have the ranges applied to the encoded or calibrated values. If the ranges are to be applied to the encoded value, then this attribute must be set to false. Otherwise, the default value of true is used and the attribute should be omitted.

I2.1.6.2 initialValue Attribute

The initialValue attribute provides an optional value for the FloatParameterType which may be overridden when the initialValue attribute is set for the Parameter. The initialValue must meet the criteria specified in the built-in float type.
I2.1.6.3 sizeInBits Attribute

The sizeInBits attribute is set according to the data defined in Tables I2.2.1-1 and I2.2.2-1.
I2.1.6.4 AncillaryDataSet
For command ParameterTypes the LimitType ancillary data items is defined.

There are no ancillary data items defined for telemetry ParameterTypes and the AncillaryDataSet element should not be included.

I2.1.6.4.1 LimitType

The LimitType ancillary data item is set to inclusive to indicate that the nominal range is between the minimum and maximum values specified. If set to exclusive, any value between the minimum and maximum values is off-nominal.
I2.1.6.5 ValidRange

The ValidRange specifies the expected range for the ParameterType.
I2.1.6.5.1 minInclusive Attribute

The minInclusive attribute is the minimum expected value for the ParameterType.
I2.1.6.5.2 maxInclusive Attribute

The maxInclusive attribute is the maximum expected value for the ParameterType.
I2.1.7 Constellation Calibration Description Options

When calibration is required for a parameter, the DefaultCalibrator in its ParameterType will be specified. If no calibration is defined for a parameter, then the DefaultCalibrator is not allowed.

When specified, the DefaultCalibrator will be either a polynomial or spline calibrator for FloatParameterType and IntegerParameterType. Note: The enumeration calibrator defined in Section J1.12.2.4.3 is actually implemented in XTCE as an EnumeratedParameterType (see Section I2.1.3). Although not natively supported in XTCE, the calibrators in this section also have inverse calibrators defined using the available elements and attributes.

I2.1.7.1 SplineCalibrator

Constellation supports line segment calibrators are represented in XTCE as a first order SplineCalibrator. Spline calibrators map input values to output values, and are described in Section J1.12.2.4.2.

The input value of a line segment start or end point is specified via the “raw” attribute of the SplinePoint. The output value is specified as the “calibrated” attribute of the SplinePoint.

I2.1.7.1.1 order Attribute

Only the default value of first order calibration is allowed for the order attribute. Do not specify.
I2.1.7.1.2 extrapolate Attribute

The default value of false is always used for the extrapolate attribute. Do not specify.
I2.1.7.1.3 SplinePoint

Each point represents a mapping from an input value (raw) to an output value (calibrated).

Note: Since inverse calibration is not supported directly by the XTCE schema, the order Attribute of a spline point is used to indicate that the spline point is used for forward or inverse calibration.
I2.1.7.1.3.1 order Attribute

The order attribute will be set to 1 for forward calibration and 2 for inverse calibration.
I2.1.7.1.3.2 raw Attribute

The raw attribute specifies the input value for the point.
I2.1.7.1.3.3 calibrated Attribute

The calibrated attribute specifies the output value for the point.
I2.1.7.1.4 SplineCalibrator Examples

Each SplineCalibrator example maps three input values to three output values. The raw and calibrated values may be integer or floating point numbers. The forward and inverse calibrations are defined together.

<xtce:SplineCalibrator>
 <!--Forward (regular) calibration -->
 <xtce:SplinePoint order="1" raw="1" calibrated="10"/>

 <xtce:SplinePoint order="1" raw="2" calibrated="100"/>
 <xtce:SplinePoint order="1" raw="3" calibrated="500"/>
 <!--Inverse (reverse) calibration -->
 <xtce:SplinePoint order="2" raw="10" calibrated="1"/>
 <xtce:SplinePoint order="2" raw="100" calibrated="2"/>
 <xtce:SplinePoint order="2" raw="500" calibrated="3"/>
</xtce:SplineCalibrator>
<xtce:SplineCalibrator>
 <!--Forward (regular) calibration -->
 <xtce:SplinePoint order="1" raw="0.1" calibrated="10.4222"/>
 <xtce:SplinePoint order="1" raw="2" calibrated="1.0078E-2"/>
 <xtce:SplinePoint order="1" raw="3" calibrated="-500"/>
 <!--Inverse (reverse) calibration -->
 <xtce:SplinePoint order="2" raw="10.4222" calibrated="0.1"/>
 <xtce:SplinePoint order="2" raw="1.0078E-2" calibrated="2"/>
 <xtce:SplinePoint order="2" raw="-500" calibrated="3"/>
</xtce:SplineCalibrator>
I2.1.7.2 PolynomialCalibrator

The PolynomialCalibrator element consists of a series of Term elements with attributes for the coefficient and exponent.

Note: Inverse calibration is not supported directly by the XTCE schema. In order to support it, the terms of the polynomial are defined to be in a specified order as described below.

I2.1.7.2.1 Term

The Term describes a single polynomial term in a polynomial equation.
I2.1.7.2.1.1 coefficient Attribute

This attribute defines the coefficient of the Term.
I2.1.7.2.1.2 exponent Attribute

This attribute defines the exponent of the Term. Valid values are integers between 0 and 7 inclusive.

I2.1.7.2.1.3 PolynomialCalibrator Example
The equation for the calibration is:

y = – 0.0048x2 + 1.4091x – 48.886

The equation of the inverse calibration is:

x = 0.021y2 + .469y + 43.2

For the XTCE Representation the forward calibrator is supplied first and unused terms have a coefficient of zero. All 8 terms for the forward and inverse calibrators are required.

<xtce:PolynomialCalibrator>
 <!--Forward (regular) calibration -->
 <xtce:Term exponent="0" coefficient="-48.446"/>
 <xtce:Term exponent="1" coefficient="1.4091"/>
 <xtce:Term exponent="2" coefficient="-0.0048"/>
 <xtce:Term exponent="3" coefficient="0"/>
 <xtce:Term exponent="4" coefficient="0"/>
 <xtce:Term exponent="5" coefficient="0"/>
 <xtce:Term exponent="6" coefficient="0"/>
 <xtce:Term exponent="7" coefficient="0"/>
 <!--Inverse (reverse) calibration -->
 <xtce:Term exponent="0" coefficient="43.2"/>
 <xtce:Term exponent="1" coefficient=".469"/>
 <xtce:Term exponent="2" coefficient="0.021"/>
 <xtce:Term exponent="3" coefficient="0"/>
 <xtce:Term exponent="4" coefficient="0"/>
 <xtce:Term exponent="5" coefficient="0"/>
 <xtce:Term exponent="6" coefficient="0"/>
 <xtce:Term exponent="7" coefficient="0"/>
</xtce:PolynomialCalibrator>
I2.1.8 Constellation XTCE Alarm Descriptions
Alarm descriptions are available for each Constellation telemetry ParameterType and are specified using DefaultAlarm. The options are described below although they vary by ParameterType.

Four XTCE alarm levels are used by Constellation Missions: Watch, Warning, Critical, and Severe. These levels are mapped to Constellation Alarm Level names in each XTCE Alarm area below.

I2.1.8.1 EnumerationAlarmType

The EnumeratedAlarmType defines the alarms for an enumerated parameter.

I2.1.8.1.1 minViolations Attribute

The minimum number of violations that trigger the alarm is 1 (default). Do not specify.
I2.1.8.1.2 defaultAlarmLevel Attribute

If the EnumerationAlarmList does not contain the enumerated value, then the alarm condition is considered normal (default). Do not specify.
I2.1.8.1.3 EnumerationAlarmList

Enumerations have a unique alarm type which consists of a list of one or more elements that contain attributes alarmLevel and enumerationValue.
I2.1.8.1.3.1 EnumerationAlarm

The EnumerationAlarm element maps an enumerated value to an alarm. Each enumeration value may only map to one alarm level.

I2.1.8.1.3.1.1 alarmLevel Attribute

The alarmLevel is one of the values listed in Table I2.1.8.1.3.1.1-1.

Table I2.1.8.1.3.1.1-1 Enumeration Alarm Levels
	XTCE alarmLevel Attribute
	Constellation Alarm Name

	normal
	Normal

	watch
	Advisory

	warning
	Caution

	critical
	Warning

	severe
	Emergency

	
	

I2.1.8.1.3.1.2 enumerationValue Attribute

The enumerationValue is the value associated with a specific enumeration label.

I2.1.8.1.4 Enumeration Alarm Example

This example shows two alarms for an enumerated value:

<xtce:EnumerationAlarmList>
 <xtce:EnumerationAlarm alarmLevel="normal" enumerationValue="0"/>
 <xtce:EnumerationAlarm alarmLevel="warning" enumerationValue="1"/>
</xtce:EnumerationAlarmList>
I2.1.8.2 Numeric Alarms for Floating Point and Integer Parameters

The term “Numeric Alarms” refers to the StaticAlarmRanges and ChangeRateAlarm elements. These elements are under FloatParameterType and IntegerParameterType in the alarm area.

I2.1.8.2.1 minViolations Attribute

This attribute defines the minimum number of violations that will trigger the alarm. The default value is 1. If the default is sufficient, do not specify.
I2.1.8.2.2 StaticAlarmRanges – Fixed Ranges

StaticAlarmRanges describe fixed alarm numeric ranges. The two types of StaticAlarmRanges supported for Constellation are inside (inclusive) alarms and outside (exclusive) alarms.

I2.1.8.2.2.1 Describing Inside StaticAlarmRanges

Inside alarms have the normal range inside the least severe range and graphically appear as follows:

[image: image18.emf]Emergency

Min

Warning

Min

Warning

Max

Emergency

Max

Caution

Min

Advisory

Min

Advisory

Max

Caution

Max

Normal

Figure I2.1.8.2.2.1-1 Inside Alarms

Inside StaticAlarmRanges map to Constellation alarm terminology as listed in Table I2.1.8.2.2.1-1:

Table I2.1.8.2.2.1-1 Inside StaticAlarmRange Element Name To Constellation Name
	XTCE StaticAlarmRange Element
	Constellation Alarm Name

	Inside WatchRange
	Normal

	WatchRange
	Advisory

	WarningRange
	Caution

	CriticalRange
	Warning

	SevereRange
	Emergency

	
	

I2.1.8.2.2.1.1 Normal Range

The normal range is inside the least severe range and implied.
I2.1.8.2.2.1.2 WatchRange

The WatchRange is optional.

I2.1.8.2.2.1.2.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be greater than the minInclusive attribute of the WarningRange, CriticalRange, and SevereRange.
I2.1.8.2.2.1.2.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be less than the maxInclusive attribute of the WarningRange, CriticalRange, and SevereRange.
I2.1.8.2.2.1.3 WarningRange

The WarningRange is optional.

I2.1.8.2.2.1.3.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be greater than the minInclusive attribute of the CriticalRange and SevereRange and less than the minInclusive of the WatchRange.
I2.1.8.2.2.1.3.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be less than the maxInclusive attribute of the CriticalRange and SevereRange and greater than the maxInclusive of the WatchRange.
I2.1.8.2.2.1.4 CriticalRange

The CriticalRange is optional.

I2.1.8.2.2.1.4.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be greater than the minInclusive attribute of the SevereRange and less than the minInclusive of the WatchRange and WarningRange.
I2.1.8.2.2.1.4.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be less than the maxInclusive attribute of the SevereRange and greater than the maxInclusive of the WatchRange and WarningRange.
I2.1.8.2.2.1.5 SevereRange

The SevereRange is optional.

I2.1.8.2.2.1.5.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be less than the minInclusive of the WatchRange, WarningRange, and CriticalRange.
I2.1.8.2.2.1.5.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be greater than the maxInclusive of the WatchRange, WarningRange, and CriticalRange.
I2.1.8.2.2.1.6 Inside Alarm Example

The example below has an implied normal range greater than -5 and less than 5. There are two warning ranges. The first is less than or equal to -5. The second is greater than or equal to 5 and less than 20. There is only a single critical range for any value greater than or equal to 20.

<xtce:StaticAlarmRanges>
 <xtce:WarningRange minInclusive="-5" maxInclusive="5"/>
 <xtce:CriticalRange maxInclusive="20"/>
</xtce:StaticAlarmRanges>
I2.1.8.2.2.2 Describing Outside StaticAlarmRanges
Outside alarms have the normal range outside the least severe range and appear graphically as follows:

[image: image19.emf]Normal

Advisory

Min

Advisory

Max

Normal

Caution

Min

Warning

Min

Warning

Max

Caution

Max

Emergency

Min Max

Figure I2.1.8.2.2.2-1 Outside Alarms

Outside StaticAlarmRanges alarms map to Constellation alarm terminology as listed in Table I2.1.8.2.2.2-1:

Table I2.1.8.2.2.2-1 Outside StaticAlarmRange Element Name To Constellation Name
	XTCE StaticAlarmRange Element
	Constellation Alarm Name

	Outside WatchRange
	Normal

	WatchRange
	Advisory

	WarningRange
	Caution

	CriticalRange
	Warning

	Inside SevereRange
	Emergency

	
	

Since XTCE does not intrinsically support outside alarms, the outside StaticAlarmRanges must be marked in some way so that it can be interpreted properly by processing software. The element CustomAlarm will be used to specify this mark.

I2.1.8.2.2.2.1 CustomAlarm

The CustomAlarm will be specified with the name attribute set to “OutsideAlarm”. No other elements or attributes are specified for the CustomAlarm. This element will be set in conjunction with the alarm range elements.

I2.1.8.2.2.2.2 Normal Range

The normal range is outside the least severe range and is implied.
I2.1.8.2.2.2.3 WatchRange

The WatchRange is optional.

I2.1.8.2.2.2.3.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be less than the minInclusive attribute of the WarningRange, CriticalRange, and SevereRange.
I2.1.8.2.2.2.3.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be greater than the maxInclusive attribute of the WarningRange, CriticalRange, and SevereRange.
I2.1.8.2.2.2.4 WarningRange

The WarningRange is optional.

I2.1.8.2.2.2.4.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be less than the minInclusive attribute of the CriticalRange and SevereRange and greater than the minInclusive of the WatchRange.
I2.1.8.2.2.2.4.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be greater than the maxInclusive attribute of the CriticalRange and SevereRange and less than the maxInclusive of the WatchRange.
I2.1.8.2.2.2.5 CriticalRange

The CriticalRange is optional.

I2.1.8.2.2.2.5.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be less than the minInclusive attribute of the SevereRange and greater than the minInclusive of the WatchRange and WarningRange.
I2.1.8.2.2.2.5.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be greater than the maxInclusive attribute of the SevereRange and less than the maxInclusive of the WatchRange and WarningRange.
I2.1.8.2.2.2.6 SevereRange

The SevereRange is optional.

I2.1.8.2.2.2.6.1 minInclusive Attribute

The minInclusive attribute is optional. If used it must be greater than the minInclusive of the WatchRange, WarningRange, and CriticalRange.
I2.1.8.2.2.2.6.2 maxInclusive Attribute

The maxInclusive attribute is optional. If used it must be less than the maxInclusive of the WatchRange, WarningRange, and CriticalRange.
I2.1.8.2.2.2.7 Outside Alarm Example

The example below shows how to use a CustomAlarm to indicate that the StaticAlarmRanges are to be interpreted as outside alarms. The normal range is implied as any value greater than 20 or less than -20. There are two warning ranges. The first is greater than or equal to -20 and less than -5. The second is less than or equal to 20 and greater than 5. There is only a single critical range for any value greater than or equal to -5 and less than or equal to 5.

<xtce:CustomAlarm name="OutsideAlarm"/>
<xtce:StaticAlarmRanges>
 <xtce:WarningRange minInclusive="-20" maxInclusive="20"/>
 <xtce:CriticalRange minInclusive="-5" maxInclusive="5"/>
</xtce:StaticAlarmRanges>
I2.1.8.2.3 ChangeAlarmRanges – Delta Alarm

The ChangeAlarmRanges are used to describe delta alarms which are similar to StaticAlarmRanges and have similar rules. Only a single level of change alarms is supported for Constellation and is indicated by the SevereRange. All other ranges are not allowed.

I2.1.8.2.3.1 changeType Attribute

This attribute is required to be set to changePerSample.
I2.1.8.2.3.2 changeBasis Attribute

The default value (absoluteChange) for changeBasis is to be used. Do not specify.
I2.1.8.2.3.3 spanOfInterestInSamples Attribute

The default value (1) for spanOfInterestInSamples is to be used. Do not specify.
I2.1.8.2.3.4 SevereRange

The SevereRange element is used to indicate delta alarms.

I2.1.8.2.3.4.1.1 minInclusive Attribute

The minInclusive attribute is optional. Values that are less than or equal to the minInclusive value trigger the alarm.
I2.1.8.2.3.4.1.2 maxInclusive Attribute

The maxInclusive attribute is optional. Values that are greater than or equal to the maxInclusive value trigger the alarm.
I2.1.8.2.3.5 ChangeAlarmRanges Example

The example below shows a change alarm that is triggered for a value greater than or equal to 10 or less than or equal to -5.

<xtce:ChangeAlarmRanges changeType="changePerSample">
 <xtce:SevereRange maxInclusive="10" minInclusive="-5"/>
</xtce:ChangeAlarmRanges>
I2.2 Constellation Parameter Types

The allowed mappings of XTCE encoding types to parameter types are defined in the following sections.

I2.2.1 Uncalibrated ParameterTypes

For ParameterTypes that do not specify a calibrator, the mappings in Table I2.2.1-1 are used. Enumerated parameters are used for the enumeration calibrators described in Section J1.12.2.4.3 and are listed in the table below.

Table I2.2.1-1 Uncalibrated ParameterTypes

	Uncalibrated Parameter Types
	Data Encoding
	@encoding
	Data Encoding Size in Bits
	Parameter Type Size in Bits
	Describes

	Integer
	Integer
	unsigned
	1-16
	16
	Unsigned 16-bit integer, encoded from 1-16 bits

	Integer
	Integer
	unsigned
	17-32
	32
	Unsigned 32-bit integer, encoded from 17-32 bits

	Integer
	Integer
	unsigned
	33-64
	64
	Unsigned 64-bit integer encoded from 33-64 bits.

	Integer
	Integer
	twosCompliment
	2-16
	16
	Signed 16-bit integer, encoded from 2-16 bits.

	Integer
	Integer
	twosCompliment
	17-32
	32
	Signed 32-bit integer, encoded from 17-32 bits.

	Integer
	Integer
	twosCompliment
	33-64
	64
	Signed 64-bit integer, encoded from 33-64 bits.

	Enumerated
	Integer
	unsigned
	1-64
	N/A
	Enumerations encoded up to 64 bits.

	Float
	Float
	IEEE754_1985
	32
	32
	Single precision floating point.

	Float
	Float
	IEEE754_1985
	64
	64
	Double precision floating point.

	Binary
	Binary
	N/A
	1-Inf
	N/A
	Binary data of unlimited length.

	String
	String
	UTF-8
	8 * number of characters
	8
	UTF-8 string encoded as a UTF-8 string.

	String
	String
	UTF-16
	16 * number of characters
	16
	UTF-16 string encoded as a UTF-16 string.

	
	
	
	
	
	

I2.2.1.1 Uncalibrated ParameterType Examples

This section contains example of the ParameterTypes listed in Table I2.2.1-1.

I2.2.1.1.1 Unsigned IntegerParameterTypes

The example below shows how to represent an encoded 32-bit unsigned integer. The encoding attribute for IntegerDataEncoding defaults to the needed value (unsigned) and should be omitted.

<xtce:IntegerParameterType name="CUINameNeededType" signed="false">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="32"/>
</xtce:IntegerParameterType>
I2.2.1.1.2 Signed IntegerParameterTypes

The example below shows how to represent an encoded 8-bit two’s complement integer. The signed attribute for the IntegerParameterType is omitted since the default value is true. The sizeInBits attribute for the IntegerDataEncoding is omitted since the default value is 8.

<xtce:IntegerParameterType name="YourCUINameType" sizeInBits="16">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding encoding="twosCompliment"/>
</xtce:IntegerParameterType>
I2.2.1.1.3 EnumeratedParameterType

The example below shows an enumerated parameter encoded as a single bit.

<xtce:EnumeratedParameterType name="YourCUINameType">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="1"/>
 <xtce:EnumerationList>
 <xtce:Enumeration label="ON" value="1"/>
 <xtce:Enumeration label="OFF" value="0"/>
 </xtce:EnumerationList>
</xtce:EnumeratedParameterType>
I2.2.1.1.4 FloatParameterType

The example below shows a single precision (32-bit) floating point number. The sizeInBits for both the FloatParameterType and FloatDataEncoding default to 32 and are omitted. The encoding for the FloatDataEncoding also defaults to the correct value of IEEE754_1985.

<xtce:FloatParameterType name="YourCUINameType">
 <xtce:UnitSet/>
 <xtce:FloatDataEncoding/>
</xtce:FloatParameterType>
I2.2.1.1.5 BinaryParameterType

The example below shows the binary parameter that is encoded in 1000 bytes (8000 bits).

<xtce:BinaryParameterType name="YourCUINameType">
 <xtce:UnitSet/>
 <xtce:BinaryDataEncoding>
 <xtce:SizeInBits>
 </xtce:FixedValue>8000</xtce:FixedVaule>
 </xtce:SizeInBits>
 </xtce:BinaryDataEncoding>
</xtce:BinaryParameterType>
I2.2.1.1.6 StringParameterType

The first example shows how to represent a UTF-8 parameter consisting of 11 characters assuming one character per byte. The default encoding for StringDataEncoding is UTF-8 and is omitted.

<xtce:StringParameterType name="YourCUINameType">
 <xtce:UnitSet/>
 <xtce:StringDataEncoding>
 <!-- Example: Length in bits is 11 characters, 8-bits per ASCII-type character -->
 <xtce:SizeInBits>

 <xtce:Fixed>
 <xtce:FixedValue>88</xtce:FixedValue>
 </xtce:Fixed>
 </xtce:SizeInBits>
 </xtce:StringDataEncoding>

</xtce:StringParameterType>

The second example shows how to represent a UTF-16 parameter consisting of 11 characters assuming one character per short-word.

<xtce:StringParameterType name="YourCUINameType">
 <xtce:UnitSet/>
 <xtce:StringDataEncoding encoding="UTF-16">
 <!-- Example: Length in bits is 11 characters, 16-bits per ASCII-type character -->
 <xtce:SizeInBits>

 <xtce:Fixed>
 <xtce:FixedValue>176</xtce:FixedValue>
 </xtce:Fixed>
 </xtce:SizeInBits>
 </xtce:StringDataEncoding>

</xtce:StringParameterType>
I2.2.2 Calibrated ParameterTypes

For ParameterTypes that specify a calibrator the mappings in Table I2.2.2-1 are used. Enumerated parameters are used for the enumeration calibrators described in Section J1.12.2.4.3 and are described in Section I2.1.3.

Table I2.2.2-1 Calibrated ParameterTypes

	Calibrated Parameter Types
	Data Encoding
	@encoding
	Data Encoding Size in Bits
	Parameter Type Size in Bits
	Describes

	Float
	Integer
	unsigned
	1-64
	64
	Double precision float for an encoded unsigned integer calibrated to engineering units

	Float
	Integer
	twosCompliment
	2-64
	64
	Double precision float for an encoded signed integer calibrated to engineering units

	Float
	Float
	IEEE754_1985
	32
	64
	Double precision float for an encoded single precision float calibrated to engineering units.

	Float
	Float
	IEEE754_1985
	64
	64
	Double precision float for an encoded double precision float calibrated to engineering units.

	
	
	
	
	
	

I2.2.2.1 Calibrated ParameterType Examples

This section contains example of the ParameterTypes listed in Table I2.2.2-1.

I2.2.2.1.1 Encoded Integer

The following example shows how to represent an encoded 16-bit unsigned integer that is calibrated using a single line segment.

<xtce:FloatParameterType name="YourCUINameType" sizeInBits="64">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="16"/>
 <xtce:DefaultCalibrator>
 <xtce:SplineCalibrator>
 <!--Forward (regular) calibration -->
 <xtce:SplinePoint order="1" raw="0" calibrated="1"/>

 <xtce:SplinePoint order="1" raw="65535" calibrated="100"/>
 <!--Inverse (reverse) calibration -->
 <xtce:SplinePoint order="2" raw="1" calibrated="0"/>
 <xtce:SplinePoint order="2" raw="100" calibrated="65535"/>
 </xtce:SplineCalibrator>
 </xtce:DefaultCalibrator>
 </xtce:IntegerDataEncoding/>
</xtce:FloatParameterType>
I2.2.2.1.2 Encoded Floating Point

The following example shows how to represent an encoded single precision floating point that is calibrated using a polynomial equation.

<xtce:FloatParameterType name="YourCUINameType" sizeInBits="64">
 <xtce:UnitSet/>
 <xtce:FloatDataEncoding>
 <xtce:DefaultCalibrator>
 <xtce:PolynomialCalibrator>
 <!--Forward (regular) calibration -->
 <xtce:Term exponent="0" coefficient="-48.446"/>
 <xtce:Term exponent="1" coefficient="1.4091"/>
 <xtce:Term exponent="2" coefficient="-0.0048"/>
 <xtce:Term exponent="3" coefficient="0"/>
 <xtce:Term exponent="4" coefficient="0"/>
 <xtce:Term exponent="5" coefficient="0"/>
 <xtce:Term exponent="6" coefficient="0"/>
 <xtce:Term exponent="7" coefficient="0"/>
 <!--Inverse (reverse) calibration -->
 <xtce:Term exponent="0" coefficient="43.2"/>
 <xtce:Term exponent="1" coefficient=".469"/>
 <xtce:Term exponent="2" coefficient="0.021"/>
 <xtce:Term exponent="3" coefficient="0"/>
 <xtce:Term exponent="4" coefficient="0"/>
 <xtce:Term exponent="5" coefficient="0"/>
 <xtce:Term exponent="6" coefficient="0"/>
 <xtce:Term exponent="7" coefficient="0"/>
 </xtce:PolynomialCalibrator>
 </xtce:DefaultCalibrator>
 </xtce:FloatDataEncoding>
</xtce:FloatParameterType>
I2.3 ParameterSet
ParameterSet holds the Parameters that will be placed in the telemetry packet.

I2.3.1 Parameter

Parameters use NameReferences to link to a ParameterType. These two together fully describes a single telemetry mnemonic (sample) or command field within XTCE.
I2.3.1.1 name Attribute

The name attribute is the Constellation Compact Unique Identifier (CxCUI) assigned to the parameter.
I2.3.1.2 shortDescription Attribute

The shortDescription attribute is an optional summary description of the type limited to 64 characters.
I2.3.1.3 LongDescription

The LongDescription element is an optional complete description of the type limited to 1024 characters.
I2.3.1.4 AncillaryDataSet
For telemetry parameters there are two ancillary data items defined for a Parameter: ConfidentialData and AccessGroup. If neither item is required, then the AncillaryDataSet should not be included.

There are no ancillary data items defined for command parameters (AccessGroup is defined in the MetaCommand instead) aand the AncillaryDataSet element should not be included.

I2.3.1.4.1 ConfidentialData

The ConfidentialData ancillary data item is optional. If specified, the value must be either true or false.

I2.3.1.4.2 AccessGroup

The AccessGroup ancillary data item is optional unless the ConfidentialData ancillary data item is defined. The value is controlled by the author of the document.

I2.3.1.4.3 Example of Ancillary Data for Parameters

The following example show ancillary data for the Parameter.

<xtce:Parameter name="CUINameNeeded" parameterTypeRef="MyParameterType">

 <xtce:AncillaryDataSet>

 <xtce:AncillaryDataItem name="ConfidentialData">true</xtce:AncillaryDataItem>

 <xtce:AncillaryDataItem name="AccessGroup">RestrictedAccessGroup</xtce:AncillaryDataItem>

 </xtce:AncillaryDataSet>

</xtce:Parameter>

I2.3.1.5 parameterTypeRef Attribute

The NameReference to a ParameterType defined as described in Section I2.1. The reference may be qualified or unqualified (see Section I1.6).

I2.3.1.6 initialValue Attribute

Any supplied initialValue will be interpreted in line with the ParameterType referenced. An initialValue here will override any initialValue in the ParameterType. The format of the data must be consistent with the ParameterType.

I2.3.1.7 Example
A typical Parameter construction simply consists of the Parameter’s name and NameReference to its ParameterType.

<xtce:Parameter name="YourCUIName" parameterTypeRef="YourCUINameType"/>
This example shows three parameters using the same ParameterType.

<xtce:Parameter name="YourCUIName1" parameterTypeRef="SharedParameterType"/>

<xtce:Parameter name="YourCUIName2" parameterTypeRef="SharedParameterType"/>

<xtce:Parameter name="YourCUIName3" parameterTypeRef="SharedParameterType"/>
I3.0 TelemetryMetaData – Telemetry

Telemetry descriptive information is captured in the TelemetryMetaData area of SpaceSystem. It contains elements for ParameterTypes and Parameters (see Section I2.0) and Containers. With these elements one can create descriptive information for many areas of telemetry mnemonics (Parameter and ParameterType) and how they are packaged into a DEM Packet (Container).

Constellation telemetry packets are described using container inheritance in XTCE. The DEM headers defined in CxP 70022-05 are described in a container as shown in Section I3.2.2. All packet instances are built upon these containers.
I3.1 ContainerSet

ContainerSet holds SequenceContainers (aka Containers) which are used by Constellation to describe DEM Telemetry Packets. XTCE allows a single telemetry packet to be composed of many SequenceContainers. However, for Constellation this will be restricted to two: first a container will describe the DEM Header and then another container will describe a specific packet body. For Constellation these two containers will be combined using XTCE container inheritance forming one packet definition. Finally, the identifying areas and their expected values that make a packet unique are defined in the restriction criteria.

I3.1.1 SequenceContainer

The SequenceContainer defines the parameters within a packet.
I3.1.1.1 name Attribute

DEM telemetry packet will use a CxCUI as the name attribute. The only exception to the rule is the name DEMHeaderAndContentMap described in Section I3.2.2.
I3.1.1.2 shortDescription Attribute

The shortDescription attribute is an optional summary description of the SequenceContainer limited to 64 characters.
I3.1.1.3 abstract Attribute

The abstract attribute is only used in the XTCE container inheritance mechanism. It should be set to true for the DEMHeaderAndContentMap definition only (see Section I3.2.2). Set to false for all other containers.
I3.1.1.4 LongDescription

The LongDescription element is an optional complete description of the SequenceContainer limited to 1024 characters.
I3.1.1.5 AncillaryDataSet

There are two ancillary data items defined for a sequence container: NominalRate and MaximumRate. These items are required for all sequence containers other than DEMHeaderAndContentMap. The AncillaryDataSet is not to be included for DEMHeaderAndContentMap.

I3.1.1.5.1.1 NominalRate

The NominalRate ancillary data item is required. Its value should be the nominal expected packet rate expressed as DEMs per second.

I3.1.1.5.1.2 MaximumRate

The MaximumRate ancillary data item is required. Its value should be the maximum expected packet rate expressed as DEMs per second.

I3.1.1.5.1.3 Example of Ancillary Data for SequenceContainer

The following example shows the ancillary data for a top level sequence container.

<xtce:SequenceContainer name="YourPacketCUI">

 <xtce:AncillaryDataSet>

 <xtce:AncillaryDataItem name="NominalRate">1</xtce:AncillaryDataItem>

 <xtce:AncillaryDataItem name="MaximumRate">50</xtce:AncillaryDataItem>

 </xtce:AncillaryDataSet>

</xtce:SequenceContainer>

I3.1.1.6 BinaryEncoding

BinaryEncoding is used to specify the maximum expected size of the container. When used in XTCE inheritance this value includes the data specified by the EntryList and the length of the EntryList from the BaseContainer. The only element or attribute used for BinaryEncoding is SizeInBits/FixedValue. All other elements and attributes should not be included.
I3.1.1.7 EntryList
The EntryList is used to build up the contents of the SequenceContainer by referencing Parameters. The only entry element allowed for Constellation is ParameterRefEntry. All of the parameter reference entries must specify their starting bit location as well.

I3.1.1.7.1 ParameterRefEntry

ParameterRefEntry specifies a parameter from the ParameterSet in the SequenceContainer.

I3.1.1.7.1.1 parameterRef Attribute

This attribute sets the name of the Parameter from ParameterSet to include in the EntryList.
I3.1.1.7.1.2 LocationInContainerInBits

The LocationInContainerInBits is the start bit for the parameter specified in bits relative to the start of the container.
I3.1.1.7.1.2.1 referenceLocation Attribute

The referenceLocation attribute must always be set to containerStart.
I3.1.1.7.1.2.2 FixedValue

The FixedValue element is the bit offset from the beginning of the container to the beginning of the referenced parameter.
I3.1.1.7.1.3 RepeatEntry

The RepeatEntry allows super-sampled or super-comm parameters. This element is only allowed when there is more than one sample of a parameter.
I3.1.1.7.1.3.1 Count

The Count element specifies the number of additional parameters available in the container and the offset between each parameter.
I3.1.1.7.1.3.1.1 FixedValue

The FixedValue element is the number of additional values in the container.
I3.1.1.7.1.3.2 Offset

The Offset element is the number of bits between the end of a sample and the next sample. This field is always required.
I3.1.1.7.1.3.2.1 FixedValue

The FixedValue element is the number of bits between the end of a sample and the next sample.
I3.1.1.7.2 EntryList Examples

The example below shows an EntryList of parameters with the start location specified for each parameter.
<xtce:EntryList>
 <xtce:ParameterRefEntry parameterRef="CUINeededHere">
 <xtce:LocationInContainerInBits referenceLocation="containerStart">
 <xtce:FixedValue>0<xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef ="CUINeededHere">
 <xtce:LocationInContainerInBits referenceLocation="containerStart">
 <xtce:FixedValue>64<xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="CUINeededHere">
 <xtce:LocationInContainerInBits referenceLocation="containerStart">
 <xtce:FixedValue>96<xtce:FixedValue>
 </xtce:LocationInContainerInBits>

 <xtce:RepeatEntry>

 <!-- The five parameter instances are all packed together -->

 <xtce:Count>

 <xtce:FixedValue>4</xtce:FixedValue>

 </xtce:Count>

 <xtce:Offset>

 <xtce:FixedValue>0</xtce:FixedValue>

 </xtce:Offset>

 </xtce:RepeatEntry>
 </xtce:ParameterRefEntry>
</xtce:EntryList>
I3.1.1.8 BaseContainer

This element specifies the container to be extended and supplies the identification areas of a packet and their expected values using its RestrictionCriteria element.

I3.1.1.8.1 containerRef Attribute

This container will extend the container specified in this attribute by the NameReference described here.
I3.1.1.8.2 RestrictionCriteria

RestrictionCriteria supplies the identifying packet information for a DEM telemetry packet. The RestrictionCriteria for all telemetry will supply values for DEMSystem, DEMType, DEMContentID, and ContentMapID as shown in Section I3.2.4.

I3.2 Constellation Telemetry Packet Construction

Constellation systems are required to exchange data using Data Exchange Messages (DEMs) as defined in CxP 70022 Volume 5: Data Exchange Protocol Specification. The DEM has a generic format for both telemetry and commands. For the purposes of the XTCE required practices, the content map id size and content map id described in Volume 5 will be considered part of the header. The content map id determines how the parameters within a DEM Packet are arranged.

I3.2.1 Header Names and Field Names

The DEM header and its field names must be consistently defined in order to maintain commonality among all of the Constellation packet definitions. This will eliminate projects from having to make translations when ingesting the packet definition from other projects. The DEM header will be defined as an abstract sequence container as shown in Section I3.2.2.

I3.2.2 Constellation DEM Header in XTCE

The following example shows the complete definition of the DEM header and content map in XTCE. Only the parameters required for identification purposes appear in the XTCE file.

<xtce:TelemetryMetaData>

 <xtce:ParameterTypeSet>

 <!-- Parameter types associated with header and content map -->

 <xtce:IntegerParameterType name="DEMContentMapIDSizeType" signed="false" sizeInBits="16">

 <xtce:UnitSet/>

 <xtce:IntegerDataEncoding sizeInBits="4"/>

 </xtce:IntegerParameterType>

 <xtce:IntegerParameterType name="DEMSystemType" signed="false" sizeInBits="16">

 <xtce:UnitSet/>

 <xtce:IntegerDataEncoding sizeInBits="11"/>

 </xtce:IntegerParameterType>

 <xtce:IntegerParameterType name="DEMTypeType" signed="false" sizeInBits="16">

 <xtce:UnitSet/>

 <xtce:IntegerDataEncoding sizeInBits="5"/>

 </xtce:IntegerParameterType>

 <xtce:IntegerParameterType name="DEMContentIDType" signed="false" sizeInBits="16">

 <xtce:UnitSet/>

 <xtce:IntegerDataEncoding sizeInBits="16"/>

 </xtce:IntegerParameterType>

 <xtce:BinaryParameterType name="ContentMapIDType">

 <xtce:UnitSet/>

 <xtce:BinaryDataEncoding>

 <xtce:SizeInBits>

 <xtce:DynamicValue>

 <xtce:ParameterInstanceRef parameterRef="DEMContentMapIDSize"/>

 </xtce:DynamicValue>

 </xtce:SizeInBits>

 </xtce:BinaryDataEncoding>

 </xtce:BinaryParameterType>

 <!-- Parameter types associated with DEM content (user data) -->

 </xtce:ParameterTypeSet>

 <xtce:ParameterSet>

 <!-- Parameters associated with header and content map -->

 <xtce:Parameter parameterTypeRef="DEMContentMapIDSizeType" name="DEMContentMapIDSize"/>

 <xtce:Parameter parameterTypeRef="DEMSystemType" name="DEMSystem"/>

 <xtce:Parameter parameterTypeRef="DEMTypeType" name="DEMType"/>

 <xtce:Parameter parameterTypeRef="DEMContentIDType" name="DEMContentID"/>

 <xtce:Parameter parameterTypeRef="ContentMapIDType" name="ContentMapID"/>

 <!-- Parameters associated with DEM content (user data) -->

 </xtce:ParameterSet>

 <xtce:ContainerSet>

 <xtce:SequenceContainer name="DEMHeaderAndContentMap" abstract="true">

 <xtce:BinaryEncoding>

 <xtce:SizeInBits>

 <!-- Size of DEM Header (128) + max size of ContentMapID (120) -->

 <xtce:FixedValue>248</xtce:FixedValue>

 </xtce:SizeInBits>

 </xtce:BinaryEncoding>

 <xtce:EntryList>

 <xtce:ParameterRefEntry parameterRef="DEMContentMapIDSize">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>22</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

 </xtce:ParameterRefEntry>

 <xtce:ParameterRefEntry parameterRef="DEMSystem">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>32</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

 </xtce:ParameterRefEntry>

 <xtce:ParameterRefEntry parameterRef="DEMType">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>43</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

 </xtce:ParameterRefEntry>

 <xtce:ParameterRefEntry parameterRef="DEMContentID">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>48</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

 </xtce:ParameterRefEntry>

 <xtce:ParameterRefEntry parameterRef="ContentMapID">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>128</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

 </xtce:ParameterRefEntry>

 </xtce:EntryList>

 </xtce:SequenceContainer>

</xtce:TelemetryMetaData>
I3.2.3 Rules for Building Constellation Telemetry Packets

All Constellation telemetry packets are built by extending the abstract DEMHeaderAndContentMap container described in Section I3.2.2. This pattern is shown in Section I3.2.4.

The RestrictionCriteria of the BaseContainer will specify the values for: DEMSystem, DEMType, DEMContentID, and ContentMapID using the ComparisonList element in RestrictionCriteria.

I3.2.4 Telemetry Pattern in XTCE

The following SequenceContainer shows how to “extend” the DEMHeaderAndContentMap to form a final packet definition.

<xtce:SequenceContainer name="RealPacket">

 <xtce:BinaryEncoding>

 <xtce:SizeInBits>

 <!-- Size of BaseContainer (248) + Size of items in EntryList -->

 <xtce:FixedValue/>

 </xtce:SizeInBits>

 </xtce:BinaryEncoding>

 <xtce:EntryList>

 <!-- Parameter references for packet omitted for example. -->

 </xtce:EntryList>

 <xtce:BaseContainer containerRef="DEMHeaderAndContentMap">

 <xtce:RestrictionCriteria>

 <xtce:Comparison parameterRef="DEMSystem" value="813"/>

 <xtce:Comparison parameterRef="DEMType" value="2"/>

 <xtce:Comparison parameterRef="ContentID" value="54"/>

 <xtce:Comparison parameterRef="ContentMapID" value="0xab019dfc97bb158a"/>

 </xtce:RestrictionCriteria>

 </xtce:BaseContainer>

</xtce:SequenceContainer>
I4.0 CommandMetaData – Commanding

CommandMetaData captures command and command packet descriptions. Many of the elements in CommandMetaData are the same as those in TelemetryMetaData.

The two unique elements in CommandMetaData are ArgumentTypeSet and MetaCommandSet. Arguments are changeable command inputs from an operator. They represent the “visible” portion of the command to the outside world. Command Parameters are generated by the system and often invisible to the user.

ArgumentTypes are defined here at a top-level while the Arguments themselves are associated with specific command (MetaCommands) and will be shown in Section I4.2.1.5.

MetaCommands are command descriptions; they bring all these various elements together to form every aspect of a command, from the argument list for the command, to the packet construction, and more. Metacommands have a local container area (not shown) that is used to build their final command packets.

CommandContainerSet is similar to ContainerSet and used here to describe the generic portion of Command Packets, or shared containers.

I4.1 ArgumentTypeSet

ArgumentTypeSet holds ArgumentTypes. Legal ArgumentTypes follow the same rules as command ParameterTypes. See Section I2.1 for more information.

NOTE: There is a known bug in the XTCE 1.1 Schema where some of the child elements or attributes of ArgumentTypeSet use the term parameterRef when it should be argumentRef. All occurrences of this should be interpreted as referring to arguments, not parameters.

I4.1.1 Command ArgumentType Tables

The legal Command ArgumentTypes are the same as for the telemetry ParameterTypes, see Section I2.2.

I4.2 MetaCommandSet

MetaCommandSet holds MetaCommands which are command descriptions.

I4.2.1 MetaCommand – Command Descriptions

MetaCommand describes a command. It has its own local CommandContainer which is different from the CommandContainerSet.

I4.2.1.1 name Attribute

The name attribute is the Constellation Compact Unique Identifier (CxCUI) assigned to the command.
I4.2.1.2 shortDescription Attribute

The shortDescription attribute is an optional summary description of the MetaCommand limited to 64 characters.
I4.2.1.3 LongDescription

The LongDescription element is an optional complete description of the MetaCommand limited to 1024 characters.
I4.2.1.4 AncillaryDataSet
There is one ancillary data item defined for a MetaCommand: AccessGroup. This item is always required.

I4.2.1.4.1 AccessGroup

The AccessGroup ancillary data item is required. Its value is controlled by the author of the document.

I4.2.1.4.2 Example of Ancillary Data for Parameters

The following example shows the ancillary data for a top level sequence container.

<xtce:MetaCommand name="YourCommandCUI">

 <xtce:AncillaryDataSet>

 <xtce:AncillaryDataItem name="AccessGroup">LaunchCommands</xtce:AncillaryDataItem>

 </xtce:AncillaryDataSet>

</xtce:MetaCommand>

I4.2.1.5 ArgumentList

Arguments to a command instance are listed in ArgumentList, the argument references its appropriate argumentType. These arguments then appear in the CommandContainer’s EntryList, although the order may be different than what is in the list.

I4.2.1.5.1 Argument

The Argument element is an individual argument to a command instance.
I4.2.1.5.1.1 shortDescription Attribute

The shortDescrpition attribute is an optional summary description of the argument limited to 64 characters.
I4.2.1.5.1.2 name Attribute

The name attribute is the Constellation Compact Unique Identifier (CxCUI) assigned to the argument.
I4.2.1.5.1.3 argumentTypeRef

The argumentTypeRef attribute is the reference to an ArgumentType defined as described in Section I4.1. The reference may be qualified or unqualified.

I4.2.1.5.1.4 initialValue

An optional initial value for the argument that will override any initial value provided in the ArgumentType. The format of the data must be consistent with the ArgumentType. For calibrated arguments, the initialValue is in engineering units.
I4.2.1.5.1.5 LongDesciption

The LongDescription element is an optional complete description of the argument limited to 1024 characters.
I4.2.1.6 CommandContainer

CommandContainer is an inner container area similar to the other Container elements in construction; however it has ArgumentRefEntry and FixedValueEntry unique to it.

The CommandContainer in MetaCommand will always be used to define its packet. It will also always have a BaseContainer of DEMHeaderAndContentMap.

I4.2.1.6.1 name Attribute

The name will be a CxCUI for a Command Packet Instance with “Packet” added to the end. Any Command Instance (MetaCommand) defines a Command Packet Instance through its local CommandContainer.
I4.2.1.6.2 shortDescription Attribute

The shortDescription attribute is an optional summary description of the CommandContainer limited to 64 characters.
I4.2.1.6.3 LongDescription

The LongDescription element is an optional complete description of the CommandContainer limited to 1024 characters.
I4.2.1.6.4 EntryList

The EntryList is used to build up the contents of the CommandContainer by referencing Parameters, Arguments, or by specifying FixedValues. All of the container reference entries must specify the start location using the element LocationInContainerInBits.
I4.2.1.6.4.1 ParameterRefEntry

ParameterRefEntry specifies a parameter from the CommandMetaData/ParameterSet in the CommandContainer.

I4.2.1.6.4.1.1 parameterRef Attribute

The parameterRef attribute is the name of the Parameter from ParameterSet to include in the EntryList
I4.2.1.6.4.1.2 LocationInContainerInBits

The LocationInContainerInBits is the start location for the parameter specified in bits relative to the start of the container.
I4.2.1.6.4.1.2.1 referenceLocation Attribute

The referenceLocation attribute must be set to containerStart.
I4.2.1.6.4.1.2.2 FixedValue

The FixedValue element is the bit offset from the beginning of the container to the beginning of the referenced parameter.
I4.2.1.6.4.2 ArgumentRefEntry

ArgumentRefEntry includes arguments in the CommandContainer.

I4.2.1.6.4.2.1 argumentRef Attribute

The argumentRef attribute is the name of the Argument to include in the EntryList
I4.2.1.6.4.2.2 LocationInContainerInBits

The LocationInContainerInBits element is the start location for the argument specified in bits relative to the start of the container.
I4.2.1.6.4.2.2.1 referenceLocation Attribute

The referenceLocation attribute must be set to containerStart.
I4.2.1.6.4.2.2.2 FixedValue

The FixedValue element is the bit offset from the beginning of the container to the beginning of the argument.
I4.2.1.6.4.3 FixedValueEntry

FixedValueEntry includes fixed values in the CommandContainer.

I4.2.1.6.4.3.1 binaryValue Attribute

The binaryValue attribute contains the actual binary or hexadecimal pattern to include in the CommanContainer. The number of characters must be consistent with the sizeInBits attribute.

I4.2.1.6.4.3.2 sizeInBits Attribute

The sizeInBits attribute is the size of the fixed value specified in bits.
I4.2.1.6.4.3.3 LocationInContainerInBits

The LocationInContainerInBits element is the start location for the argument specified in bits relative to the start of the container.
I4.2.1.6.4.3.3.1 referenceLocation Attribute

The referenceLocation attribute must be set to containerStart.
I4.2.1.6.4.3.3.2 FixedValue

The FixedValue element is the bit offset from the beginning of the container to the beginning of the fixed value.
I4.2.1.6.5 BaseContainer

BaseContainer is used to extend the DEMHeaderAndContentMap for Constellation to define Command Packet instances in each MetaCommand. This mechanism works in a similiar manner for commands as for telemetry (see Section I3.1.1.8).

I4.2.1.6.5.1 containerRef Attribute

The containerRef attribute is a NameReference set to DEMHeaderAndContentMap.
I4.2.1.6.5.2 RestrictionCriteria

RestrictionCriteria is interpreted as injecting specified assignment values into Command Containers. For Constellation commands, only the comparison operator “==” is supported (the default) and will be interpreted as “:=” (i.e., assignment). The operator is not specified.

The RestrictionCriteria supplies the command packet values for the specified command parameters. The RestrictionCriteria for all commands will be DEMContentMapSize, DEMSystem, DEMType, DEMContentID, and ContentMapID as shown in Section I4.5.

I4.2.1.7 VerfierSet

The VerifierSet provides telemetry confirmation of command activity.
I4.2.1.7.1 CompleteVerifier

The CompleteVerifier provides parameter checks to determine if a command completed successfully.

I4.2.1.7.1.1 name Attribute

This attribute defines an optional name for the verifier. The name does not have to be unique.
I4.2.1.7.1.2 shortDescription Attribute

The shortDescription attribute is an optional summary description of the verifier limited to 64 characters.
I4.2.1.7.1.3 LongDescription

The LongDescription element is an optional complete description of the verifier limited to 1024 characters.
I4.2.1.7.1.4 ComparisonList

The ComparisonList element is a list of one or more Comparisons used for command completion verification. All must evaluate to true within the time frame specifed by CheckWindow for completion to be verified. Each Comparison is composed of the following attributes.

I4.2.1.7.1.4.1 parameterRef Attribute

This attribute supplies a NameReference to the telemetry Parameter whose value must be checked.
I4.2.1.7.1.4.2 instance Attribute

Always use the most recent instance which is the default. Do not specify.
I4.2.1.7.1.4.3 useCalibratedValue Attribute

This attribute specifies if the calibrated value of the parameter is used in the comparison. Only set if the uncalibrated value is used. Otherwise, use the default (true).
I4.2.1.7.1.4.4 comparisonOperator Attribute

Set to any operator: ==, <, <=, >, >=, and !=. The default is ==. The comparison equation should always be interpreted as:

parameterRef comparisonOperator value

For example,

AnotherCUIName >= 10.0
I4.2.1.7.1.4.5 value Attribute

The value attribute is the value used in the comparison. The format of the data must be consistent with the referenced parameter type.
I4.2.1.7.1.5 CheckWindow

This element defines the amount of time that verifiers are checked.
I4.2.1.7.1.5.1 timeToStopChecking Attribute

This attribute specifies the amount of time that all verifiers must evaluate to true for the command to be considered complete.
I4.2.1.7.1.5.2 timeWindowIsRelativeTo Attribute

This attribute should always be set to commandRelease.
I4.2.2 BlockMetaCommand

BlockMetaCommands define a sequence of commands that are sent as a group.
I4.2.2.1 name Attribute

The name of the group of commands specified according to the Constellation Data Architecture Naming and Identification Rules defined in Appendix G.
I4.2.2.2 shortDescription Attribute

The shortDescription attribute is an optional summary description of the BlockMetaCommand limited to 64 characters.
I4.2.2.3 LongDescription

The LongDescription element is an optional complete description of the BlockMetaCommand limited to 1024 characters.
I4.2.2.4 MetaCommandStepList

This element defines each command in the sequence. Sequence is set by the order in the list.
I4.2.2.4.1 MetaCommandStep

This element describes a single command from the sequence.
I4.2.2.4.1.1 metaCommandRef Attribute

This attribute gives the NameReference for a MetaCommand for this step in the sequence.
I4.2.2.4.1.2 ArgumentList

This element contains the values for arguments to the MetaCommand. If no value is defined, then the initialValue supplied with the MetaCommand is used.
I4.2.2.4.1.2.1 Argument

The Argument element is a single argument to a MetaCommand
I4.2.2.4.1.2.1.1 name Attribute

This attribute defines the argument name whose value is to be set.
I4.2.2.4.1.2.1.2 value Attribute

This argument gives the value of the argument. The format of the data must be consistent with the argument type.
I4.3 CommandContainerSet – CommandContainer

CommandContainerSet holds CommandContainers although from the NameReference standpoint, it is part of the ContainerSet area within the TelemetryMetaData, see Section I3.1.

For Constellation Commands, a CommandContainer will describe a DEMHeaderAndContentMap if it is not already specified in the ContainerSet area of TelemetryMetaData. Otherwise, the CommandContainerSet is not allowed.

I4.4 Rules for Building Constellation Commands

A command packet’s DEM Header is the same as for a telemetry packet. The DEM Header only needs to be defined once in XTCE in either the TelemetryMetaData or CommandMetaData. All Constellation commands are built from the abstract DEMHeaderAndContentMap container described in Section I3.2.2. DEM command packets will be constructed by following the pattern in Section I4.5. The RestrictionCriteria will specify the values for: DEMContentMapIDSize, DEMSystem, DEMType, DEMContentID, and ContentMapID to provide the identifying information using ComparisonList.
I4.5 Command Pattern in XTCE

The following SequenceContainer shows how to “extend” the DEMHeaderAndContentMap to form a final packet definition.

The command pattern represented in XTCE is shown in the example below. Note that the EntryList has been left empty for illustrative purposes.

<xtce:MetaCommandSet>
 <xtce:MetaCommand name="MyCommandCUI">
 <xtce:CommandContainer name="MyCommandCUIPacket">

 <xtce:BinaryEncoding>

 <xtce:SizeInBits>

 <!-- Size of BaseContainer (248) + Size of items in EntryList -->

 <xtce:FixedValue/>

 </xtce:SizeInBits>

 </xtce:BinaryEncoding>

 <xtce:EntryList>

 <!-- Parameter references for packet omitted for example. -->

 </xtce:EntryList>
 <xtce:BaseContainer containerRef="DEMHeaderAndContentMap">

 <xtce:RestrictionCriteria>

 <xtce:Comparison parameterRef="DEMContentMapIDSize" value="8"/>

 <xtce:Comparison parameterRef="DEMSystem" value="65"/>

 <xtce:Comparison parameterRef="DEMType" value="1"/>

 <xtce:Comparison parameterRef="DEMContentID" value="54"/>

 <xtce:Comparison parameterRef="ContentMapID" value="0xab0143fc97bb158a"/>

 </xtce:RestrictionCriteria>

 </xtce:BaseContainer/>
 </xtce:CommandContainer>
 </xtce:MetaCommand>
</xtce:MetaCommandSet>
I5.0 A Complete XTCE Example

The example in this section has been created to illustrate the description of a single telemetry packet and its associated command packet. The complete XTCE file for this example can be found in Section I6.0.

I5.1 Telemetry Packet

The telemetry packet’s parameters can be described using the attributes from Section J1.12.4. There are a total of five parameters defined for the telemetry packet. The example telemetry packet includes parameters that are single sampled, multi sampled, integers, floats, strings, line segment calibrators, static alarms, and much more. The example doesn’t include every possible attribute or element allowed for Constellation, but is intended to be a general guide on building an XTCE file describing a Constellation telemetry packet.

I5.1.1 Defining the Data

The information about the parameters in this packet is organized into the tables of Section J1.12.4. Only the tables that are actually used are shown. Any attribute within a table that is not used is omitted.

Table I5.1.1-1 Telemetry Stream Attributes

	 Attribute
	Telemetry Packet

	System
	100

	Type
	2

	Content ID
	519

	Content Map ID
	0xab0143a09dfc97bb

	Nominal Expected Stream Rate
	1

	Maximum Expected Stream Rate
	1

	
	

Table I5.1.1-2 Telemetry Parameter Attributes
	Attribute
	CUI1
	CUI2
	CUI3
	CUIA
	CUIB

	Name
	CUI1
	CUI2
	CUI3
	CUIA
	CUIB

	Data Type
	IEEE Float
	UTF-16
	Signed Integer
	Signed Integer
	Signed Integer

	Parameter Length
	32
	176
	16
	32
	32

	Units
	
	
	units:Becquerel
	
	

	Calibrator Type
	
	
	Line Segment
	
	

	
	
	
	
	
	

Table I5.1.1-3 Telemetry Sampling Attributes
	Attribute
	CUI1
	CUI2
	CUI3
	CUIA
	CUIB

	System
	100
	100
	100
	100
	100

	Type
	2
	2
	2
	2
	2

	Content ID
	519
	519
	519
	519
	519

	Start Bit
	0
	160
	336
	352
	384

	Number of Samples
	5
	1
	1
	1
	1

	Sample Offset
	0
	
	
	
	

	
	
	
	
	
	

Table I5.1.1-4 Line-Segment Calibrator Attributes

	 Attribute
	CUI3

	Input Value
	-32768, 0, 32768

	Output Value
	0, 5, 20

	
	

Table I5.1.1-5 Inverse Line-Segment Calibrator Attributes

	 Attribute
	CUI3

	Input Value
	0, 5, 20

	Output Value
	-32768, 0, 32768

	
	

Table I5.1.1-6 Static Alarm Attributes

	 Attribute
	CUIA
	CUIB

	Advisory Low Limit
	-2000
	-2000

	Advisory High Limit
	5000
	5000

	Caution Low Limit
	-5000
	-5000

	Caution High Limit
	6000
	6000

	
	
	

I5.1.2 Step by Step

The general steps to create a telemetry packet in XTCE are shown below. Each subsection will contain a more detailed explanation of how to translate from the tables in Section I5.1.1 into XTCE.
1. Define the DEMHeaderAndContentMap – this is used in the BaseContainer for every telemetry packet container.

2. Create the ParameterTypes – most of the information about a parameter is in the ParameterType. For each ParameterType you will specify:

a. A name.

b. The units, if any.

c. The alarms, if any.

d. The encoding. The encoding contains even more information about the parameter including:

i. The size.

ii. The calibration.

3. Create the parameters – this will be a very simple construction which references the ParameterType defined previously. Each parameter will be given a CUI for a name.

4. Package the parameters in a sequence container. The sequence container will:

a. Have a name.

b. Include all of the parameter entries.

c. Use the DEMHeaderAndContentMap for a BaseContainer.

I5.1.2.1 Step 1: Copy the DEMHeaderAndContentMap

This step is very simple. Just copy the XML from Section I3.2.2 into the XTCE file. The next step will take a little longer.

I5.1.2.2 Step 2: Create the Parameter Types

A ParameterType can be created for every parameter in the packet. However, sometimes two or more parameters can share a ParameterType. This can only occur if the parameters are identical in every way but name. This is true for parameters CUIA and CUIB above. They will share the same parameter type definition.

When a ParameterType is unique for a parameter, then ParameterType’s name will be the CUI with ‘Type’ added to the end. The ParameterType that is shared will just need a unique name. In this case, it will be named ‘SharedType’.

The ParameterType for CUI1 is very simple. Using the table in Section I2.2.1 the correct ParameterType and encoding type can be determined. There is no calibration, units, or alarms so the XTCE is very simple:

<xtce:FloatParameterType name="CUI1Type">

 <xtce:UnitSet/>

 <xtce:FloatDataEncoding/>

</xtce:FloatParameterType>
The ParameterType for CUI2 is also fairly simple. There isn’t a default size for the encoding, so a little more information is needed.

<xtce:StringParameterType name="CUI2Type">

 <xtce:UnitSet/>

 <xtce:StringDataEncoding encoding="UTF-16">

 <xtce:SizeInBits>

 <xtce:Fixed>

 <xtce:FixedValue>176</xtce:FixedValue>

 </xtce:Fixed>

 </xtce:SizeInBits>

 </xtce:StringDataEncoding>

</xtce:StringParameterType>
The ParameterType for CUI3 contains a line segment calibrator. The calibrator is defined as part of the encoding. Since the ParameterType is calibrated, use the table in Section I2.2.2 to determine the parameter and encoding types. The calibration information must contain both the forward and inverse calibration information.

<xtce:FloatParameterType name="CUI3Type" sizeInBits="64">
 <xtce:UnitSet>

 <xtce:Unit description="Bq">units:Becquerel</xtce:Unit>

 </xtce:UnitSet>

 <xtce:IntegerDataEncoding encoding="twosCompliment" sizeInBits="16">

 <xtce:DefaultCalibrator>

 <xtce:SplineCalibrator>

 <!-- Forward calibrators use order = 1 -->

 <xtce:SplinePoint order="1" calibrated="0" raw="-32768"/>

 <xtce:SplinePoint order="1" calibrated="5" raw="0"/>

 <xtce:SplinePoint order="1" calibrated="20" raw="32767"/>

 <!-- Inverse calibrators use order = 2 -->

 <xtce:SplinePoint order="2" calibrated="-32768" raw="0"/>

 <xtce:SplinePoint order="2" calibrated="0" raw="5"/>

 <xtce:SplinePoint order="2" calibrated="32767" raw="20"/>

 </xtce:SplineCalibrator>

 </xtce:DefaultCalibrator>

 </xtce:IntegerDataEncoding>

</xtce:FloatParameterType>
The final ParameterType for this packet is shared by two parameters. It also has a static alarm.

<xtce:IntegerParameterType name="SharedType">

 <xtce:UnitSet/>

 <xtce:IntegerDataEncoding encoding="twosCompliment" sizeInBits="32"/>

 <xtce:DefaultAlarm>

 <xtce:StaticAlarmRanges>

 <xtce:WatchRange minInclusive="-2000" maxExclusive="5000"/>

 <xtce:WarningRange minExclusive="-5000" maxExclusive="6000"/>

 </xtce:StaticAlarmRanges>

 </xtce:DefaultAlarm>

</xtce:IntegerParameterType>
I5.1.2.3 Step 3: Create the Parameters

The ParameterTypes contain almost all of the information about a parameter, so the parameter information is very simple; it just instantiates a ParameterType with a name.

<xtce:Parameter parameterTypeRef="CUI1Type" name="CUI1"/>

<xtce:Parameter parameterTypeRef="CUI2Type" name="CUI2"/>

<xtce:Parameter parameterTypeRef="CUI3Type" name="CUI3"/>

<xtce:Parameter parameterTypeRef="SharedType" name="CUIA"/>

<xtce:Parameter parameterTypeRef="SharedType" name="CUIB"/>
I5.1.2.4 Step 4: Package the Parameters

The parameters of a telemetry packet are packaged in a sequence container whose name is the CUI associated with the packet. A simplified version of the sequence container is shown below. The list of entries and base container will be filled in later.

<xtce:SequenceContainer name="PacketCUI">

 <xtce:BinaryEncoding>

 <xtce:SizeInBits>

 <!-- Size of BaseContainer (248) + Size of items in EntryList -->

 <xtce:FixedValue/>

 </xtce:SizeInBits>

 </xtce:BinaryEncoding>

 <xtce:EntryList>

 <!-- The parameter reference entries go here. -->

 </xtce:EntryList>

 <xtce:BaseContainer containerRef="DEMHeaderAndContentMap">

 <!-- The restriction criteria go here. -->

 </xtce:BaseContainer>

</xtce:SequenceContainer>
Most parameters are placed into the container using parameter references and start locations. If a parameter appears in a packet multiple times, the number of repeated values and the offset between these values, if any, must be defined. The first parameter in the packet appears five times and is described in XTCE as shown below.

<xtce:ParameterRefEntry parameterRef="CUI1">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>0</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

 <xtce:RepeatEntry>

 <!-- The five parameter instances are all packed together, offset between them is 0 -->

 <xtce:Count>

 <xtce:FixedValue>4</xtce:FixedValue>

 </xtce:Count>

 </xtce:RepeatEntry>

</xtce:ParameterRefEntry>
The other four parameters are appear only once in the packet and are all described in the same way. The only difference in each entry is the parameter reference and start location.

<xtce:ParameterRefEntry parameterRef="CUI2">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>160</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="CUI3">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>336</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="CUIA">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>352</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="CUIB">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>384</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>
Once all of parameters are placed in the packet, the BaseContainer and RestrictionCriteria are defined. The RestrictionCriteria are used to match incoming packets to the correct XTCE metadata using the DEM topic and content map identifier. For this packet, the content map identifier is an 8 byte hexadecimal number. The container reference will always be the DEMHeaderAndContentMap defined in the first step.

<xtce:BaseContainer containerRef="DEMHeaderAndContentMap">

 <xtce:RestrictionCriteria>

 <xtce:ComparisonList>

 <xtce:Comparison parameterRef="DEMSystem" value="100"/>

 <xtce:Comparison parameterRef="DEMType" value="2"/>

 <xtce:Comparison parameterRef="DEMContentID" value="519"/>

 <xtce:Comparison parameterRef="ContentMapID" value="0xab0143a09dfc97bb"/>

 </xtce:ComparisonList>

 </xtce:RestrictionCriteria>

</xtce:BaseContainer>
That’s it for defining a telemetry packet. The complete telemetry packet definition can be found in Section I6.0.

I5.2 Command and Command Packet Example

The command information can be described using the attributes from Section J1.12.3. There is only a single command packet defined in this example. It has two user modifiable arguments and one fixed value parameter. The arguments are defined in the same manner as the parameters for telemetry. The fixed value parameter is placed directly into the container without any other definition. There are two verifiers for the command that are in the telemetry packet example.

I5.2.1 Defining the Data

The information about the parameters in this command is organized into the tables of Section J1.12.3. Only the tables that are actually used are shown. Any attribute within a table that is not used is omitted.

Table I5.2.1-1 Command Parameter Attributes
	Attribute
	CmdCUI1
	CmdCUI2
	CmdCUI3

	Parameter Name
	CmdCUI1
	CmdCUI2
	CmdCUI3

	Data Type
	Unsigned Integer
	Unsigned Integer
	Unsigned Integer

	Parameter Length
	16
	7
	1

	Modifiable
	user
	fixed
	user

	Calibrator Type
	
	
	Enumeration

	Low Limit
	0
	
	

	High Limit
	100
	
	

	Encoded Value Limits
	True
	
	

	
	
	
	

Table I5.2.1-2 Command Parameter Enumeration Calibrator Attributes

	 Attribute
	CmdCUI3

	Enumeration Label
	OFF, ON

	Value
	0, 1

	
	

Table I5.2.1-3 Command Packing Attributes

	 Attribute
	UniqueName

	Packing Structure Name
	UniqueName

	Parameter Name
	CmdCUI1, CmdCUI2, CmdCUI3

	Start Bit
	0, 16, 23

	
	

Table I5.2.1-4 Command Instance Attributes

	 Attribute
	MyCmdCUI

	Command Name
	MyCmdCUI

	System
	100

	Type
	1

	Content ID
	457

	Content Map ID
	0xffeeddccbbaa9988

	Access Group
	ReboostCommands

	Packing Structure Name
	UniqueName

	
	

Table I5.2.1-5 Command Instance Attributes

	 Attribute
	MyCmdCUI

	Parameter Name
	CmdCUI1, CmdCUI2, CmdCUI3

	Value
	10, b1011010,

	
	

Table I5.2.1-6 Command Verifier Attributes

	 Attribute
	MyCmdCUi

	Verifier Parameter
	CUI1, CUI3

	Value Is Encoded
	True, False

	Comparison Operator
	>=, <

	Value
	150.0, 3.0

	Timeout
	7.25

	
	

I5.2.2 Step by Step

The general steps to create a command in XTCE are shown below. Each subsection will contain a more detailed explanation of how to translate from the tables in Section I5.2.1 into XTCE.
1. Define the parameters.

2. Define the argument types.

3. Define the command.

a. Add the parameters.

b. Add the arguments.

c. Add the fixed values.

d. Define the correct content map.

4. Define the verifiers.

I5.2.2.1 Step 1: Define the Parameters

For this command there are no parameters, so nothing needs to be defined for parameter types or parameters.
I5.2.2.2 Step 2: Define the Argument Types

There are two arguments (user modifiable parameters) for this command: CmdCUI1 and CmdCUI3. CmdCUI2 is a fixed value and does not need an argument or parameter type.

CmdCUI1 is an unsigned integer with a valid range from 0-100 inclusive. It has a default value of 0. The XTCE for this argument type is very simple.

<xtce:IntegerArgumentType name="CmdCUI1Type" initialValue="0">

 <xtce:UnitSet></xtce:UnitSet>

 <xtce:IntegerDataEncoding sizeInBits="16"/>

 <xtce:ValidRange minInclusive="0" maxInclusive="100"/>

</xtce:IntegerArgumentType>
CmdCUI3 is also encoded as an unsigned integer, but it has enumeration calibration defined. In XTCE enumeration calibration is represented as an enumerated type. There isn’t a default value, so the user will have to set a value prior to transmission of the command.

<xtce:EnumeratedArgumentType name="CmdCUI3Type">

 <xtce:UnitSet></xtce:UnitSet>

 <xtce:IntegerDataEncoding sizeInBits="1"/>

 <xtce:EnumerationList>

 <xtce:Enumeration label="OFF" value="0"/>

 <xtce:Enumeration label="ON" value="1"/>

 </xtce:EnumerationList>
</xtce:EnumeratedArgumentType>
The two arguments are defined in the argument list and reference the argument types defined in step 2.

<xtce:ArgumentList>

 <xtce:Argument name="CmdCUI1" argumentTypeRef="CmdCUI1Type"/>

 <xtce:Argument name="CmdCUI3" argumentTypeRef="CmdCUI3Type"/>

</xtce:ArgumentList>
I5.2.2.3 Step 3: Define the Command and Command Packet

The command is defined by specifying the order of all parameters in the command and attaching it to a DEM Header. The order of the parameters, including fixed values, is part of the entry list for the command container. The identifying information supplied in the packet is specified using the RestrictionCriteria for the header.

The general structure of a command will be:

<xtce:MetaCommand name="MyCommandCUI">

 <xtce:ArgumentList>

 <!-- Note: Arguments for this command go here (step 2). -->

 </xtce:ArgumentList>

 <xtce:CommandContainer name="MyCommandCUIPacket">

 <xtce:BinaryEncoding>

 <xtce:SizeInBits>

 <!-- Size of BaseContainer (248) + Size of items in EntryList -->

 <xtce:FixedValue/>

 </xtce:SizeInBits>

 </xtce:BinaryEncoding>

 <xtce:EntryList>

 <!-- Note: Argument, parameter, and fixed value entries go here. -->

 </xtce:EntryList>

 <xtce:BaseContainer containerRef="DEMHeaderAndContentMap">

 <xtce:RestrictionCriteria>

 <!-- Note: This will be system, type, content id, and content map id. -->

 </xtce:RestrictionCriteria>

 </xtce:BaseContainer>

 </xtce:CommandContainer>

 <xtce:VerifierSet>

 <!-- Note: Telemetry parameters to check, if any, go here (step 4). -->

 </xtce:VerifierSet>

</xtce:MetaCommand>
CmdCUI1 and CmdCUI3 are both added using argument references. These are very similar to the parameter references used when adding telemetry parameters.

<xtce:ArgumentRefEntry argumentRef="CmdCUI1">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>0</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

</xtce:ArgumentRefEntry>

<xtce:ArgumentRefEntry argumentRef="CmdCUI3">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>23</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

</xtce:ArgumentRefEntry>
CmdCUI2 is a fixed value, so it is defined only in the command container. Its value is listed in binary, but could also be represented in hexadecimal.

<xtce:FixedValueEntry binaryValue="b1011010" sizeInBits="7">

 <xtce:LocationInContainerInBits>

 <xtce:FixedValue>16</xtce:FixedValue>

 </xtce:LocationInContainerInBits>

</xtce:FixedValueEntry>
The RestrictionCriteria for the command is the same as for telemetry with the addition of size of the ContentMapID. These values are to be supplied in the command packet.

<xtce:RestrictionCriteria>

 <xtce:ComparisonList>

 <xtce:Comparison parameterRef="DEMContentMapIDSize" value="8"/>

 <xtce:Comparison parameterRef="DEMSystem" value="100"/>

 <xtce:Comparison parameterRef="DEMType" value="1"/>

 <xtce:Comparison parameterRef="DEMContentID" value="519"/>

 <xtce:Comparison parameterRef="ContentMapID" value="0xffeeddccbbaa9988"/>

 </xtce:ComparisonList>

</xtce:RestrictionCriteria>
I5.2.2.4 Step 4: Define the Verifiers

The verifier parameters define the telemetry to check for command completion. For this command the telemetry must match the verification conditions in 7.25 seconds or less to be considered successful.

<xtce:VerifierSet>

 <xtce:CompleteVerifier>

 <xtce:ComparisonList>

 <xtce:Comparison parameterRef="CUI1" value="150.00" comparisonOperator=">="/>

 <xtce:Comparison parameterRef="CUI3" value="3.00" comparisonOperator="<"/>

 </xtce:ComparisonList>

 <xtce:CheckWindow timeToStopChecking="PT7.25S"/>

 </xtce:CompleteVerifier>

</xtce:VerifierSet>
That’s it for defining a command packet. The complete command packet definition can be found in Section I6.0.

I6.0 XML Full Example

The complete XML for the example in the previous section is listed below.

<?xml version="1.0" encoding="UTF-8"?>
<xtce:SpaceSystem name="CrewLaunchVehicle" xmlns:xtce="http://www.omg.org/space/xtce" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.omg.org/space/xtce SpaceSystemV1.1.xsd">
 <xtce:LongDescription>Long description for the header. All long descriptions work this way.</xtce:LongDescription>
 <xtce:Header validationStatus="Draft" classification="Restricted" date="2008-03-09" version="0.9.1">
 <xtce:AuthorSet>
 <xtce:Author>John Doe, (555)555-5555 john.doe@nasa.gov</xtce:Author>
 </xtce:AuthorSet>
 <xtce:NoteSet>
 <xtce:Note>XTCE example for required practices.</xtce:Note>
 </xtce:NoteSet>
 <xtce:HistorySet>
 <xtce:History>Initial version.</xtce:History>
 </xtce:HistorySet>
 </xtce:Header>
 <xtce:TelemetryMetaData>
 <xtce:ParameterTypeSet>
 <!-- Parameter types associated with header and content map -->
 <xtce:IntegerParameterType name="DEMContentMapIDSizeType" signed="false" sizeInBits="16" initialValue="8">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="4"/>
 </xtce:IntegerParameterType>
 <xtce:IntegerParameterType name="DEMSystemType" signed="false" sizeInBits="16">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="11"/>
 </xtce:IntegerParameterType>
 <xtce:IntegerParameterType name="DEMTypeType" signed="false" sizeInBits="16">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="5"/>
 </xtce:IntegerParameterType>
 <xtce:IntegerParameterType name="DEMContentIDType" signed="false" sizeInBits="16">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="16"/>
 </xtce:IntegerParameterType>
 <xtce:BinaryParameterType name="ContentMapIDType">
 <xtce:UnitSet/>
 <xtce:BinaryDataEncoding>
 <xtce:SizeInBits>
 <xtce:DynamicValue>
 <xtce:ParameterInstanceRef parameterRef="DEMContentMapIDSize"/>
 </xtce:DynamicValue>
 </xtce:SizeInBits>
 </xtce:BinaryDataEncoding>
 </xtce:BinaryParameterType>
 <!-- Parameter types associated with DEM content (user data) -->
 <xtce:FloatParameterType name="CUI1Type">
 <xtce:UnitSet/>
 <xtce:FloatDataEncoding/>
 </xtce:FloatParameterType>
 <xtce:StringParameterType name="CUI2Type">
 <xtce:UnitSet/>
 <xtce:StringDataEncoding encoding="UTF-16">
 <xtce:SizeInBits>
 <xtce:Fixed>
 <xtce:FixedValue>176</xtce:FixedValue>
 </xtce:Fixed>
 </xtce:SizeInBits>
 </xtce:StringDataEncoding>
 </xtce:StringParameterType>
 <xtce:FloatParameterType name="CUI3Type" sizeInBits="64">
 <xtce:UnitSet>
 <xtce:Unit description="Bq">units:Becquerel</xtce:Unit>
 </xtce:UnitSet>
 <xtce:IntegerDataEncoding encoding="twosCompliment" sizeInBits="16">
 <xtce:DefaultCalibrator>
 <xtce:SplineCalibrator>
 <!-- Forward calibrators use order = 1 -->
 <xtce:SplinePoint order="1" calibrated="0" raw="-32768"/>
 <xtce:SplinePoint order="1" calibrated="5" raw="0"/>
 <xtce:SplinePoint order="1" calibrated="20" raw="32767"/>
 <!-- Inverse calibrators use order = 2 -->
 <xtce:SplinePoint order="2" calibrated="-32768" raw="0"/>
 <xtce:SplinePoint order="2" calibrated="0" raw="5"/>
 <xtce:SplinePoint order="2" calibrated="32767" raw="20"/>
 </xtce:SplineCalibrator>
 </xtce:DefaultCalibrator>
 </xtce:IntegerDataEncoding>
 </xtce:FloatParameterType>
 <xtce:IntegerParameterType name="SharedType">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding encoding="twosCompliment" sizeInBits="32"/>
 <xtce:DefaultAlarm>
 <xtce:StaticAlarmRanges>
 <xtce:WatchRange minInclusive="-2000" maxExclusive="5000"/>
 <xtce:WarningRange minExclusive="-5000" maxExclusive="6000"/>
 </xtce:StaticAlarmRanges>
 </xtce:DefaultAlarm>
 </xtce:IntegerParameterType>
 </xtce:ParameterTypeSet>
 <xtce:ParameterSet>
 <!-- Parameters associated with header and content map -->
 <xtce:Parameter parameterTypeRef="DEMContentMapIDSizeType" name="DEMContentMapIDSize"/>
 <xtce:Parameter parameterTypeRef="DEMSystemType" name="DEMSystem"/>
 <xtce:Parameter parameterTypeRef="DEMTypeType" name="DEMType"/>
 <xtce:Parameter parameterTypeRef="DEMContentIDType" name="DEMContentID"/>
 <xtce:Parameter parameterTypeRef="ContentMapIDType" name="ContentMapID"/>
 <!-- Parameters associated with DEM content (user data) -->
 <xtce:Parameter parameterTypeRef="CUI1Type" name="CUI1"/>
 <xtce:Parameter parameterTypeRef="CUI2Type" name="CUI2"/>
 <xtce:Parameter parameterTypeRef="CUI3Type" name="CUI3"/>
 <xtce:Parameter parameterTypeRef="SharedType" name="CUIA"/>
 <xtce:Parameter parameterTypeRef="SharedType" name="CUIB"/>
 </xtce:ParameterSet>
 <xtce:ContainerSet>
 <xtce:SequenceContainer name="DEMHeaderAndContentMap" abstract="true">
 <xtce:BinaryEncoding>
 <xtce:SizeInBits>
 <!-- Size of DEM Header (128) + max size of ContentMapID (120) -->
 <xtce:FixedValue>248</xtce:FixedValue>
 </xtce:SizeInBits>
 </xtce:BinaryEncoding>
 <xtce:EntryList>
 <xtce:ParameterRefEntry parameterRef="DEMContentMapIDSize">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>22</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="DEMSystem">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>32</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="DEMType">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>43</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="DEMContentID">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>48</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="ContentMapID">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>128</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 </xtce:EntryList>
 </xtce:SequenceContainer>
 <xtce:SequenceContainer name="PacketCUI">
 <xtce:BinaryEncoding>
 <xtce:SizeInBits>
 <!-- Size of BaseContainer (248) + Size of items in EntryList (416) -->
 <xtce:FixedValue>664</xtce:FixedValue>
 </xtce:SizeInBits>
 </xtce:BinaryEncoding>
 <xtce:EntryList>
 <xtce:ParameterRefEntry parameterRef="CUI1">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>0</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 <xtce:RepeatEntry>
 <!-- The five parameter instances are all packed together -->
 <xtce:Count>
 <xtce:FixedValue>4</xtce:FixedValue>
 </xtce:Count>
 <xtce:Offset>
 <xtce:FixedValue>0</xtce:FixedValue>
 </xtce:Offset>
 </xtce:RepeatEntry>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="CUI2">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>160</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="CUI3">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>336</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="CUIA">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>352</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 <xtce:ParameterRefEntry parameterRef="CUIB">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>384</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ParameterRefEntry>
 </xtce:EntryList>
 <xtce:BaseContainer containerRef="DEMHeaderAndContentMap">
 <xtce:RestrictionCriteria>
 <xtce:ComparisonList>
 <xtce:Comparison parameterRef="DEMSystem" value="100"/>
 <xtce:Comparison parameterRef="DEMType" value="2"/>
 <xtce:Comparison parameterRef="DEMContentID" value="519"/>
 <xtce:Comparison parameterRef="ContentMapID" value="0xab0143a09dfc97bb"/>
 </xtce:ComparisonList>
 </xtce:RestrictionCriteria>
 </xtce:BaseContainer>
 </xtce:SequenceContainer>
 </xtce:ContainerSet>
 </xtce:TelemetryMetaData>
 <xtce:CommandMetaData>
 <xtce:ArgumentTypeSet>
 <xtce:IntegerArgumentType name="CmdCUI1Type" initialValue="0">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="16"/>
 <xtce:ValidRange minInclusive="0" maxInclusive="100"/>
 </xtce:IntegerArgumentType>
 <xtce:EnumeratedArgumentType name="CmdCUI3Type">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="1"/>
 <xtce:EnumerationList>
 <xtce:Enumeration label="OFF" value="0"/>
 <xtce:Enumeration label="ON" value="1"/>
 </xtce:EnumerationList>
 </xtce:EnumeratedArgumentType>
 </xtce:ArgumentTypeSet>
 <xtce:MetaCommandSet>
 <xtce:MetaCommand name="MyCommandCUI">
 <xtce:ArgumentList>
 <xtce:Argument name="CmdCUI1" argumentTypeRef="CmdCUI1Type"/>
 <xtce:Argument name="CmdCUI3" argumentTypeRef="CmdCUI3Type"/>
 </xtce:ArgumentList>
 <xtce:CommandContainer name="MyCommandCUIPacket">
 <xtce:BinaryEncoding>
 <xtce:SizeInBits>
 <!-- Size of BaseContainer (248) + Size of items in EntryList (24) -->
 <xtce:FixedValue>272</xtce:FixedValue>
 </xtce:SizeInBits>
 </xtce:BinaryEncoding>
 <xtce:EntryList>
 <xtce:ArgumentRefEntry argumentRef="CmdCUI1">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>0</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ArgumentRefEntry>
 <xtce:FixedValueEntry binaryValue="b1011010" sizeInBits="7">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>16</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:FixedValueEntry>
 <xtce:ArgumentRefEntry argumentRef="CmdCUI3">
 <xtce:LocationInContainerInBits>
 <xtce:FixedValue>23</xtce:FixedValue>
 </xtce:LocationInContainerInBits>
 </xtce:ArgumentRefEntry>
 </xtce:EntryList>
 <xtce:BaseContainer containerRef="DEMHeaderAndContentMap">
 <xtce:RestrictionCriteria>
 <xtce:ComparisonList>
 <xtce:Comparison parameterRef="DEMContentMapIDSize" value="8"/>
 <xtce:Comparison parameterRef="DEMSystem" value="100"/>
 <xtce:Comparison parameterRef="DEMType" value="1"/>
 <xtce:Comparison parameterRef="DEMContentID" value="519"/>
 <xtce:Comparison parameterRef="ContentMapID" value="0xffeeddccbbaa9988"/>
 </xtce:ComparisonList>
 </xtce:RestrictionCriteria>
 </xtce:BaseContainer>
 </xtce:CommandContainer>
 <xtce:VerifierSet>
 <xtce:CompleteVerifier>
 <xtce:ComparisonList>
 <xtce:Comparison parameterRef="CUI1" value="150.00" comparisonOperator=">="/>
 <xtce:Comparison parameterRef="CUI3" value="3.00" comparisonOperator="<"/>
 </xtce:ComparisonList>
 <xtce:CheckWindow timeToStopChecking="PT7.25S"/>
 </xtce:CompleteVerifier>
 </xtce:VerifierSet>
 </xtce:MetaCommand>
 </xtce:MetaCommandSet>
 </xtce:CommandMetaData>
</xtce:SpaceSystem>
I7.0 Tables

The tables in this section are provided for quickly mapping back to the required practices provided throughout the appendix.

I7.1.1 Required Practices Summary

The following tables summarize of all of the required practices in this appendix, organized by XTCE elements. These tables show all XTCE elements and attributes allowed for Constellation and any element or attribute marked “not allowed” should not appear in a Constellation XTCE file. The required practice summary for each table does not always provide all of the information necessary to describe the required practice, and the given reference may be used for more information.

Some element’s sub-elements and attributes are not defined in a separate table. A slash (‘/’) is used to denote a sub-element. The symbol ‘@’ is used to denote an attribute of an element.
Table I7.1-1 Space System Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	xsi:schemaLocation
	Required – must be set to “http://www.omg.org/space/xtce SpaceSystemV1.1.xsd”
	I1.0

	xmlns:xtce
	Required – must be set to “http://www.omg.org/space/xtce”
	I1.0

	xmlns:xsi
	Required – must be set to “http://www.w3.org/2001/XMLSchema-instance”
	I1.0

	name
	Camel Case Common Name from CxP 70172-01
	I1.1

	shortDescription
	Optional – up to 64 characters
	I1.2

	LongDescription
	Optional – up to 1024 characters
	I1.3

	AliasSet
	Not allowed
	

	AncillaryData
	Not allowed
	

	Header
	Required for root. Otherwise optional, see Table I7.1-3
	I1.4

	TelemetryMetaData
	If CommandMetaData used, optional – see Table I7.1-2. Otherwise, required
	I3.0

	CommandMetaData
	If TelemetryMetaData used, optional – see Table I7.1-30. Otherwise, required
	I4.0

	ServiceSet
	Not allowed
	

	SpaceSystem
	Optional – If child SpaceSystems are used reference, see section I1.5 for specific requirements
	I1.0

	
	
	

Table I7.1-2 Telemetry Meta Data Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	ParameterTypeSet
	Required – see Table I7.1-4
	I2.1

	ParameterSet
	Required – see Table I7.1-24
	I2.3

	ContainerSet
	Required – see Table I7.1-26
	I3.1

	MessageSet
	Not allowed
	

	Stream Set
	Not allowed
	

	AlgorithmSet
	Not allowed
	

	
	
	

Table I7.1-3 Space System/Header Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	version
	Required - major.minor.micro-release
	I1.4.1

	date
	Required – format is YYYY-MM-DD
	I1.4.2

	classification
	Required – must be ‘Public’, ‘NASA’, or ‘Constellation’
	I1.4.3

	classificationInstructions
	Not allowed
	

	validationStatus
	Required – must be ‘Working’, ‘Draft’, ‘Release’, or ‘Withdrawn’
	I1.4.4

	AuthorSet
	Required – point of contact for the document
	I1.4.5

	NoteSet
	Optional
	I1.4.6

	HistorySet
	Optional
	I1.4.7

	
	
	

Table I7.1-4 Parameter Type Set Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	StringParameterType
	Optional – see Table I7.1-5
	I2.1.2

	EnumeratedParameterType
	Optional – see Table I7.1-7
	I2.1.3

	IntegerParameterType
	Optional – see Table I7.1-9
	I2.1.4

	BinaryParameterType
	Optional – see Table I7.1-10
	I2.1.5

	FloatParameterType
	Optional – see Table I7.1-11
	I2.1.6

	BooleanParameterType
	Not allowed
	

	RelativeTimeParameterType
	Not allowed
	

	AbsoluteTimeParameterType
	Not allowed
	

	ArrayParameterType
	Not allowed
	

	AggregateParameteterType
	Not allowed
	

	
	
	

Table I7.1-5 String Parameter Type Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	shortDescription
	Optional – up to 64 characters
	I2.1.1.2

	name
	Required
	I2.1.1.1

	baseType
	Not allowed
	

	initialValue
	Optional
	I2.1.2.1

	restrictionPattern
	Not allowed
	

	characterWidth
	TBD
	

	LongDescription
	Optional – up to 1024 characters
	I2.1.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Not allowed
	I2.1.1.4

	UnitSet
	Optional – see Table I7.1-6
	I2.1.1.5

	BinaryDataEncoding
	Not allowed
	

	FloatDataEncoding
	Not allowed
	

	IntegerDataEncoding
	Not allowed
	

	StringDataEncoding
	Required – see Table I7.1-12
	I2.1.1.6.2

	SizeRangeInCharacters
	TBD
	

	DefaultAlarm
	Not allowed
	

	ContextAlarmList
	Not allowed
	

	
	
	

Table I7.1-6 Unit Set Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	Unit
	Contains the QNAME defined in tables of Appendix F
	I2.1.1.5.1

	Unit@power
	Not allowed
	

	Unit@factor
	Not allowed
	

	Unit@description
	Contains the abbreviation from Appendix F
	I2.1.1.5.1.1

	
	
	

Table I7.1-7 Enumerated Parameter Type Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	shortDescription
	Optional – up to 64 characters
	I2.1.1.2

	name
	Required
	I2.1.1.1

	baseType
	Not allowed
	

	initialValue
	Optional
	I2.1.3.1

	LongDescription
	Optional – up to 1024 characters
	I2.1.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Not allowed
	I2.1.1.4

	UnitSet
	Optional – see Table I7.1-6
	I2.1.1.5

	BinaryDataEncoding
	Not allowed
	

	FloatDataEncoding
	Not allowed
	

	IntegerDataEncoding
	Required – see Table I7.1-14, IntergerDataEncoding@encoding must be unsigned
	I2.1.1.6.4

	StringDataEncoding
	Not allowed
	

	EnumerationList
	Required – see Table I7.1-8
	I2.1.3.2

	DefaultAlarm
	Optional – see Table I7.1-19
	I2.1.8.1

	ContextAlarmList
	Not allowed
	

	
	
	

Table I7.1-8 Enumeration List Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	Enumeration@value
	The unsigned integer value associated with an enumeration label
	I2.1.3.2.1.1

	Enumeration@label
	The string value to associate with an unsigned integer
	I2.1.3.2.1.2

	
	
	

Table I7.1-9 Integer Parameter Type Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	shortDescription
	Optional – up to 64 characters
	I2.1.1.2

	name
	Required
	I2.1.1.1

	baseType
	Not allowed
	

	validRangeAppliesToCalibrated
	For telemetry parameters, always false. For command parameters, true or false.
	I2.1.4.1

	initialValue
	Optional
	I2.1.4.2

	sizeInBits
	Required – Set according to Table I2.2.1-1
	I2.1.4.3

	signed
	Required to be false if IntegerDataEncoding@encoding is unsigned. Otherwise, not allowed.
	I2.1.4.4

	LongDescription
	Optional – up to 1024 characters
	I2.1.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	For telemetery, not allowed. For commanding, see required practice.
	I2.1.4.5

	UnitSet
	Optional – see Table I7.1-6
	I2.1.1.5

	BinaryDataEncoding
	Not allowed
	

	FloatDataEncoding
	Not allowed
	

	IntegerDataEncoding
	Required – see Table I7.1-6
	I2.1.1.6.4

	StringDataEncoding
	Not allowed
	

	ToString
	Not allowed
	

	ValidRange@minInclusive
	Optional – Minimum expected value for encoding data
	I2.1.4.6.1

	ValidRange@maxInclusive
	Optional – Maximum expected value for encoding data
	I2.1.4.6.2

	DefaultAlarm
	Optional – see Table I7.1-20
	I2.1.8.2

	ContextAlarmList
	Not allowed
	

	
	
	

Table I7.1-10 Binary Parameter Type Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	shortDescription
	Optional – up to 64 characters
	I2.1.1.2

	name
	Required
	I2.1.1.1

	baseType
	Not allowed
	

	initialValue
	Optional
	I2.1.5.1

	LongDescription
	Optional – up to 1024 characters
	I2.1.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Not allowed
	I2.1.1.4

	UnitSet
	Optional – see Table I7.1-6
	I2.1.1.5

	BinaryDataEncoding
	Required – see Table I7.1-15
	I2.1.1.6.5

	FloatDataEncoding
	Not allowed
	

	IntegerDataEncoding
	Not allowed
	

	StringDataEncoding
	Not allowed
	

	DefaultAlarm
	Not allowed
	

	ContextAlarmList
	Not allowed
	

	
	
	

Table I7.1-11 Float Parameter Type Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	shortDescription
	Optional – up to 64 characters
	I2.1.1.2

	name
	Required
	I2.1.1.1

	baseType
	Not allowed
	

	validRangeAppliesToCalibrated
	For telemetry parameters, always false. For command parameters, true or false.
	I2.1.6.1

	initialValue
	Optional
	I2.1.6.2

	sizeInBits
	Required – Set according to Table I2.2.1-1
	I2.1.6.3

	LongDescription
	Optional – up to 1024 characters
	I2.1.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	For telemetery, not allowed. For commanding, see required practice.
	I2.1.6.4

	UnitSet
	Optional – see Table I7.1-6
	I2.1.1.5

	BinaryDataEncoding
	Not allowed
	

	FloatDataEncoding
	Required – see Table I7.1-13
	I2.1.1.6.3

	IntegerDataEncoding
	Not allowed
	

	StringDataEncoding
	Not allowed
	

	ToString
	Not allowed
	

	ValidRange@minInclusive
	Optional – Minimum expected value for encoding data
	I2.1.6.5.1

	ValidRange@maxInclusive
	Optional – Maximum expected value for encoding data
	I2.1.6.5.2

	DefaultAlarm
	Optional – see Table I7.1-20
	I2.1.8.2

	ContextAlarmList
	Not allowed
	

	
	
	

Table I7.1-12 String Data Encoding Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	bitOrder
	Use default, do not specify
	I2.1.1.6.1.1

	encoding
	UTF-8 or UTF-16
	I2.1.1.6.2.1

	ErrorDetectCorrect
	Not allowed
	

	ByteOrderList
	Use default, do not specify
	I2.1.1.6.1.2

	SizeInBits
	Required – element Fixed/FixedValue set to size in bits
	I2.1.1.6.2.2

	
	
	

Table I7.1-13 Float Data Encoding Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	bitOrder
	Use default, do not specify
	I2.1.1.6.1.1

	encoding
	Use default, do not specify
	I2.1.1.6.3.1

	sizeInBits
	Required if 64. Otherwise, use default and do not specify.
	I2.1.1.6.3.2

	ErrorDetectCorrect
	Not allowed
	

	ByteOrderList
	Use default, do not specify
	I2.1.1.6.1.2

	DefaultCalibrator
	Optional. See Table I7.1-16
	I2.1.1.6.1.3

	ContextCalibratorList
	Not allowed
	I2.1.1.6.1.4

	
	
	

Table I7.1-14 Integer Data Encoding Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	bitOrder
	Use default, do not specify
	I2.1.1.6.1.1

	encoding
	For signed integers set to twosCompliment. Otherwise, default of unsigned is used and attribute is omitted.
	I2.1.1.6.4.1

	sizeInBits
	Required – up to 64 bits
	I2.1.1.6.4.2

	ErrorDetectCorrect
	Not allowed
	

	ByteOrderList
	Use default, do not specify
	I2.1.1.6.1.2

	DefaultCalibrator
	Optional. See Table I7.1-16
	I2.1.1.6.1.3

	ContextCalibratorList
	Not allowed
	I2.1.1.6.1.4

	
	
	

Table I7.1-15 Binary Data Encoding Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	bitOrder
	Use default, do not specify
	I2.1.1.6.1.1

	ErrorDetectCorrect
	Not allowed
	

	ByteOrderList
	Use default, do not specify
	I2.1.1.6.1.2

	SizeInBits
	Required – element Fixed/FixedValue set to size in bits
	I2.1.1.6.5.1

	FromBinaryTransformAlgorithm
	Not allowed
	

	ToBinaryTransformAlgorithm
	Not allowed
	

	
	
	

Table I7.1-16 Calibrator Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	shortDescription
	Optional
	

	name
	Optional. Not required to be unique.
	

	LongDescription
	Optional
	

	AliasSet
	Not allowed
	

	AncillaryData
	Not allowed
	

	SplineCalibrator
	Optional – see Table I7.1-17
	I2.1.7.1

	PolynomialCalibrator
	Optional – see Table I7.1-18
	I2.1.7.2

	MathOperationCalibrator
	Not allowed
	

	
	
	

Table I7.1-17 Spline Calibrator Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	order
	Use default, do not specify
	I2.1.7.1.1

	extrapolate
	Use default, do not specify
	I2.1.7.1.2

	SplinePoint@order
	Set to 1 for forward points. Set to 2 for inverse points.
	I2.1.7.1.3.1

	SplinePoint@raw
	Input value for the point
	I2.1.7.1.3.2

	SplinePoint@calibrated
	Output value for the point
	I2.1.7.1.3.3

	
	
	

Table I7.1-18 Polynomial Calibrator Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	Term@coefficient
	Floating point value
	I2.1.7.2.1.1

	Term@exponent
	Integer value between 0 and 7 inclusive
	I2.1.7.2.1.2

	
	
	

Table I7.1-19 Enumeration Alarm Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	minViolation
	Use default, do not specify
	I2.1.8.1.1

	defaultAlarmLevel
	Use default, do not specify
	I2.1.8.1.2

	AlarmConditions
	Not allowed
	

	CustomAlarm
	Not allowed
	

	EnumerationAlarmList
	EnumerationAlarm@alarmLevel – must be normal, watch, warning, critical, or severe

EnumerationAlarm@enumerationValue – integer value associated with alarm
	I2.1.8.1.3.1.1and
I2.1.8.1.3.1.2

	
	
	

Table I7.1-20 Numeric Alarm Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	minViolation
	Optional. If 1, do not specify
	I2.1.8.2.1

	AlarmConditions
	Not allowed
	

	CustomAlarm
	For inside alarms, not allowed. For outside alarms, set CustomAlarm@name to ‘OutsideAlarm’. No other attributes or elements allowed.
	I2.1.8.2.2.2.1

	StaticAlarmRanges
	Optional – see Table I7.1-21 or 7.1-22
	

	ChangeAlarmRanges
	Optional – see Table I7.1-23
	

	
	
	

Table I7.1-21 Inside Static Alarm RAnges Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	WatchRange@minInclusive
	Optional
	I2.1.8.2.2.1.2.1

	WatchRange@minExclusive
	Not allowed
	

	WatchRange@maxInclusive
	Optional
	I2.1.8.2.2.1.2.2

	WatchRange@maxExclusive
	Not allowed
	

	WarningRange@minInclusive
	Optional
	I2.1.8.2.2.1.3.1

	WarningRange@minExclusive
	Not allowed
	

	WarningRange@maxInclusive
	Optional
	I2.1.8.2.2.1.3.2

	WarningRange@maxExclusive
	Not allowed
	

	DistressRange
	Not allowed
	

	CriticalRange@minInclusive
	Optional
	I2.1.8.2.2.1.4.1

	CriticalRange@minExclusive
	Not allowed
	

	CriticalRange@maxInclusive
	Optional
	I2.1.8.2.2.1.4.2

	CriticalRange@maxExclusive
	Not allowed
	

	SevereRange@minInclusive
	Optional
	I2.1.8.2.2.1.5.1

	SevereRange@minExclusive
	Not allowed
	

	SevereRange@maxInclusive
	Optional
	I2.1.8.2.2.1.5.2

	SevereRange@maxExclusive
	Not allowed
	

	
	
	

Table I7.1-22 Outside Static Alarm RAnges Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	WatchRange@minInclusive
	Optional
	I2.1.8.2.2.2.3.1

	WatchRange@minExclusive
	Not allowed
	

	WatchRange@maxInclusive
	Optional
	I2.1.8.2.2.2.3.2

	WatchRange@maxExclusive
	Not allowed
	

	WarningRange@minInclusive
	Optional
	I2.1.8.2.2.2.4.1

	WarningRange@minExclusive
	Not allowed
	

	WarningRange@maxInclusive
	Optional
	I2.1.8.2.2.2.4.2

	WarningRange@maxExclusive
	Not allowed
	

	DistressRange
	Not allowed
	

	CriticalRange@minInclusive
	Optional
	I2.1.8.2.2.2.5.1

	CriticalRange@minExclusive
	Not allowed
	

	CriticalRange@maxInclusive
	Optional
	I2.1.8.2.2.2.5.2

	CriticalRange@maxExclusive
	Not allowed
	

	SevereRange@minInclusive
	Optional
	I2.1.8.2.2.2.6.1

	SevereRange@minExclusive
	Not allowed
	

	SevereRange@maxInclusive
	Optional
	I2.1.8.2.2.2.6.2

	SevereRange@maxExclusive
	Not allowed
	

	
	
	

Table I7.1-23 Change Alarm Ranges Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	changeType
	Required to be set to changePerSample
	I2.1.8.2.3.1

	changeBasis
	Use default, do not specify
	I2.1.8.2.3.2

	spanOfInterestInSamples
	Use default, do not specify
	I2.1.8.2.3.3

	spanOfInterestInSeconds
	Not allowed
	

	WatchRange
	Not allowed
	

	WarningRange
	Not allowed
	

	DistressRange
	Not allowed
	

	CriticalRange
	Not allowed
	

	SevereRange@minInclusive
	Optional. If specified, value must be negative.
	I2.1.8.2.3.4.1.1

	SevereRange@minExclusive
	Not allowed
	

	SevereRange@maxInclusive
	Optional. If specified, value must be positive.
	I2.1.8.2.3.4.1.2

	SevereRange@maxExclusive
	Not allowed
	

	
	
	

Table I7.1-24 Parameter Set Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	Parameter
	Required – See Table I7-1.25
	I2.3.1

	ParameterRef
	Not allowed
	

	
	
	

Table I7.1-25 Parameter Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	name
	Required – CxCUI
	I2.3.1.1

	shortDescription
	Optional – up to 64 characters
	I2.3.1.2

	parameterTypeRef
	Required
	I2.3.1.5

	initialValue
	Optional
	I2.3.1.6

	LongDescription
	Optional – up to 1024 characters
	I2.3.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Optional. See required practice
	I2.3.1.4

	
	
	

Table I7.1-26 Sequence Container Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	name
	Required – If a packet, CxCUI. Otherwise, user defined.
	I3.1.1.1

	shortDescription
	Optional – up to 64 characters
	I3.1.1.2

	abstract
	Required – set to true for DEMHeaderAndContentMap. Otherwise, do not specify.
	I3.1.1.3

	idlePattern
	Not allowed
	

	LongDescription
	Optional – up to 1024 characters
	I3.1.1.4

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Required for containers holding complete packet definitions. Otherwise, not allowed.
	I3.1.1.5

	DefaultRateInStream
	Not allowed
	

	RateInStreamSet
	Not allowed
	

	BinaryEncoding
	Only SizeInBits/FixedValue used to indicate packet length
	I3.1.1.6

	EntryList
	Required – See Table I7.1-27
	I3.1.1.7

	BaseContainer
	Not allowed for DEMHeaderAndContentMap. Otherwise, required – See Table I7.1-29
	I3.1.1.8

	
	
	

Table I7.1-27 Telemetry Entry List Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	ParameterRefEntry
	Optional – See Table I7.1-28
	I3.1.1.7.1

	ParameterSegmentRefEntry
	Not allowed
	

	ContainerRefEntry
	Not allowed
	

	ContainerSegmentRefEntry
	Not allowed
	

	StreamSegmentRefEntry
	Not allowed
	

	IndirectParameterRefEntry
	Not allowed
	

	ArrayParameterRefEntry
	Not allowed
	

	
	
	

Table I7.1-28 Telemetry Parameter Ref Entry Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	parameterRef
	Required
	I3.1.1.7.1.1

	LocationInContainerInBits
	Required
	I3.1.1.7.1.2

	RepeatEntry
	If single sampled data, not allowed. Otherwise, required.
	I3.1.1.7.1.3

	IncludeCondition
	Not allowed
	

	
	
	

Table I7.1-29 Telemetry Base Container Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	containerRef
	Required to be set to DEMHeaderAndContentMap
	I3.1.1.8.1

	RestrictionCriteria
	Required. These parameters are required to be supplied along with their respective values: DEMSystem, DEMType, DEMContentID, and ContentMapID.
	I3.1.1.8.2

	
	
	

Table I7.1-30 Command Meta Data Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	ParameterTypeSet
	Required – see Table I7.1-4
	I2.1

	ParameterSet
	Required – see Table I7.1-24
	I2.3

	ArgumentTypeSet
	Optional. Required if any commands are modifiable by the user. See Table I7.1-31.
	I4.1

	MetaCommandSet
	Required – See Table I7.1-32
	I4.2

	CommandContainerSet
	Not allowed
	

	Stream Set
	Not allowed
	

	AlgorithmSet
	Not allowed
	

	
	
	

Table I7.1-31 Argument Type Set Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	StringArgumentType
	Optional – see Table I7.1-5
	I2.1.2

	EnumeratedArgumentType
	Optional – see Table I7.1-7
	I2.1.3

	IntegerArgumentType
	Optional – see Table I7.1-9
	I2.1.4

	BinaryArgumentType
	Optional – see Table I7.1-10
	I2.1.5

	FloatArgumentType
	Optional – see Table I7.1-11
	I2.1.6

	BooleanArgumentType
	Not allowed
	

	RelativeTimeArgumentType
	Not allowed
	

	AbsoluteTimeArgumentType
	Not allowed
	

	ArrayArgumentType
	Not allowed
	

	AggregateArgumentType
	Not allowed
	

	
	
	

Table I7.1-32 Meta Command Set Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	MetaCommand
	Required – see Table I7.1-33
	I4.2.1

	MetaCommandRef
	Not allowed
	

	BlockMetaCommand
	Optional – see Table I7.1-43
	I4.2.2

	
	
	

Table I7.1-33 Meta Command Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	name
	Required – CxCUI
	I4.2.1.1

	shortDescription
	Optional – up to 64 characters
	I4.2.1.2

	abstract
	Use default, do not specify
	

	LongDescription
	Optional – up to 1024 characters
	I4.2.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Required. One ancillary data item: AccessGroup
	I4.2.1.4

	BaseMetaCommand
	Not allowed
	

	SystemName
	Not allowed
	

	ArgumentList
	Optional – see Table I7.1-34
	I4.2.1.5

	CommandContainer
	Required – see Table I7.1-35, packet description for this command
	I4.2.1.6

	TransmissionConstraintList
	Not allowed
	

	DefaultSignificance
	Not allowed
	

	ContextSignificanceList
	Not allowed
	

	Interlock
	Not allowed
	

	VerifierSet
	Optional – see Table I7.1-40
	I4.2.1.7

	ParameterToSetList
	Not allowed
	

	ParametersToSuspendAlarmsOnSet
	Not allowed
	

	
	
	

Table I7.1-34 Argument List Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	Argument@shortDescription
	Optional – up to 64 characters
	I4.2.1.5.1.1

	Argument@name
	Required – CxCUI
	I4.2.1.5.1.2

	Argument@argumentTypeRef
	Required
	I4.2.1.5.1.3

	Argument@initialValue
	Optional
	I4.2.1.5.1.4

	Argument/LongDescription
	Optional – up to 1024 characters
	I4.2.1.5.1.5

	Argument/AliasSet
	Not allowed
	

	Argument/AncillaryDataSet
	Not allowed
	

	
	
	

Table I7.1-35 Command Container Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	name
	Required: CxCUI plus ‘Packet’
	I4.2.1.6.1

	shortDescription
	Optional – up to 64 characters
	I4.2.1.6.2

	LongDescription
	Optional – up to 1024 characters
	I4.2.1.6.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Not allowed
	

	DefaultRateInStream
	Not allowed
	

	RateInStreamSet
	Not allowed
	

	BinaryEncoding
	Not allowed
	

	EntryList
	Required – See Table I7.1-36
	I4.2.1.6.4

	BaseContainer
	Optional – See Table I7.1-40
	I4.2.1.6.5

	
	
	

Table I7.1-36 Command Entry List Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	ParameterRefEntry
	Optional – See Table I7.1-37
	I4.2.1.6.4.1

	ParameterSegmentRefEntry
	Not allowed
	

	ContainerRefEntry
	Not allowed
	

	ContainerSegmentRefEntry
	Not allowed
	

	StreamSegmentRefEntry
	Not allowed
	

	IndirectParameterRefEntry
	Not allowed
	

	ArrayParameterRefEntry
	Not allowed
	

	ArgumentRefEntry
	Optional – See Table I7.1-38
	I4.2.1.6.4.2

	ArrayArgumentRefEntry
	Not allowed
	

	FixedValueEntry
	Optional – See Table I7.1-39
	I4.2.1.6.4.3

	
	
	

Table I7.1-37 Command Parameter Ref Entry Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	parameterRef
	Required
	I4.2.1.6.4.1.1

	LocationInContainerInBits
	Required
	I4.2.1.6.4.1.2

	RepeatEntry
	Not allowed
	

	IncludeCondition
	Not allowed
	

	
	
	

Table I7.1-38 Command Argument Ref Entry Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	argumentRef
	Required
	I4.2.1.6.4.2.1

	LocationInContainerInBits
	Required
	I4.2.1.6.4.2.2

	RepeatEntry
	Not allowed
	

	IncludeCondition
	Not allowed
	

	
	
	

Table I7.1-39 Command Fixed Value Entry Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	binaryValue
	Required
	I4.2.1.6.4.3.1

	sizeInBits
	Required
	I4.2.1.6.4.3.2

	LocationInContainerInBits
	Required
	I4.2.1.6.4.3.3

	RepeatEntry
	Not allowed
	

	IncludeCondition
	Not allowed
	

	
	
	

Table I7.1-40 Command Container Base Container Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	containerRef
	Required – set to DEMHeaderAndContentMap
	I4.2.1.6.5.1

	RestrictionCriteria
	Required. Set parameters and expected values for: DEMContentMapIDSize, DEMSystem, DEMType, DEMContentID, and ContentMapID in ComparisonList.
	I4.2.1.6.5.2

	
	
	

Table I7.1-41 VeriFIER Set Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	TransferredToRangeVerifier
	Not allowed
	

	SentFromRangeVerifier
	Not allowed
	

	ReceivedVerifier
	Not allowed
	

	AcceptedVerifier
	Not allowed
	

	QueuedVerifier
	Not allowed
	

	ExecutionVerfier
	Not allowed
	

	CompleteVerifier
	Optional – See Table I7.1-42
	I4.2.1.7.1

	FailedVerifier
	Not allowed
	

	
	
	

Table I7.1-42 Complete Verifier Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	name
	Optional – the name does not have to be unique
	I4.2.1.7.1.1

	shortDescription
	Optional – up to 64 characters
	I4.2.1.7.1.2

	LongDescription
	Optional – up to 1024 characters
	I4.2.1.7.1.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Not allowed
	

	ComparisonList
	Required. See reference.
	I4.2.1.7.1.4

	ContainerRef
	Not allowed
	

	ParameterValueChange
	Not allowed
	

	CustomAlgorithm
	Not allowed
	

	BooleanExpression
	Not allowed
	

	Comparison
	Not allowed
	

	CheckWindow
	Required. See reference.
	I4.2.1.7.1.5

	CheckWindowAlgorithms
	Not allowed
	

	ReturnParamRef
	Not allowed
	

	
	
	

Table I7.1-43 Block Meta Command Required Practices

	XTCEAttribute or child Element
	Require Practice Summary
	RP Reference

	name
	Required
	I4.2.2.1

	shortDescription
	Optional – up to 64 characters
	I4.2.2.2

	LongDescription
	Optional – up to 1024 characters
	I4.2.2.3

	AliasSet
	Not allowed
	

	AncillaryDataSet
	Not allowed
	

	MetaCommandStepList
	Required
	

	--MetaCommandStep
	Required
	

	----@metaCommandRef
	Required
	I4.2.2.4.1.1

	----ArgumentList
	Required if command has user modifiable parameters. Otherwise, not allowed.
	

	------Argument
	Required if command has user modifiable parameters
	

	--------@name
	Required if command has user modifiable parameters
	I4.2.2.4.1.2.1.1

	--------@value
	Required if command has user modifiable parameters
	I4.2.2.4.1.2.1.2

	
	
	

I7.1.2 Attributes to Require Practices

The tables below show how to map the attributes from sections 3.4.3 and 3.4.4 to XTCE. These tables are meant to help find the relevant section for the complete definition of the required practices. In some cases, the information in these tables may be sufficient to correctly interpret the required practices. However, it is suggested that the RP (Required Practice) reference always be consulted for any additional details.

Table I7.2-1 Command Parameter Attributes (3.4.3.1.1-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Parameter Name
	xtce:CommandMetaData
	xtce:ParameterSet

xtce:Parameter name = “CxCUI”
	I2.3.1.1

	Description
	xtce:CommandMetaData

xtce:ParameterSet
	xtce:Parameter

xtce:LongDescription=””
	I2.3.1.3

	Short Description
	xtce:CommandMetaData
	xtce:ParameterSet

xtce:Parameter shortDescription=””
	I2.3.1.2

	Data Type
	xtce:CommandMetaData

xtce:ParameterTypeSet

One of the items on the right based on parameter type:
	xtce:StringParameterType

xtce:StringDataEncoding encoding=”UTF-8” or “UTF-16”
	I2.1.1.6.2.1

	
	
	xtce:IntegerParameterType

xtce:IntegerDataEncoding encoding = “twosCompliment” or “unsigned”
	I2.1.1.6.4.1

	
	
	xtce:FloatParameterType

xtce:FloatDataEncoding or

xtce:IntegerDataEncoding
	I2.1.1.6.2.1
or
I2.1.1.6.4.1

	
	
	xtce:BinaryParameterType

xtce:BinaryDataEncoding
	I2.1.1.6.5

	Parameter Length
	For String Parameter Types:

xtce:CommandMetaData

xtce:ParameterTypeSet

xtce:StringParameterType
	xtce:StringDataEncoding

xtce:SizeInBits

xtce:Fixed

xtce:FixedValue
	I2.1.1.6.2.2

	
	For Binary Parameter Types:

xtce:CommandMetaData

xtce:ParameterTypeSet

xtce:BinaryParameterType
	xtce:BinaryDataEncoding

xtce:SizeInBits

xtce:Fixed

xtce:FixedValue
	I2.1.1.6.5.1

	
	Other Parameter Types:

xtce:CommandMetaData

xtce:ParameterTypeSet

xtce:[..]ParameterType
	xtce:[..]DataEncoding

xtce:sizeInBits
	I2.1.1.6.3.2
Or
I2.1.1.6.4.2

	Byte Order
	Do not specify
	This attribute is required to be the default: big endian
	I2.1.1.6.1.2

	Modifiable
	The Modifiable attribute is not explicitly identified in XTCE; it is implicitly determined by the use of the below XTCE elements:

xtce:CommandMetaData

xtce:ArgumentTypeSet

For ‘system’ modifiable commands use:

xtce:CommandMetaData

xtce:ParameterTypeSet
For ‘fixed’ commands:

xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand

xtce:CommandContainer

xtce:EntryList

xtce:FixedValueEntry
	Commands parameters that are modifiable by the user or system will have corresponding argument or parameter types. Fixed values will be placed directly into the command container.
	N/A

	Units
	xtce:CommandMetaData

xtce:ParameterTypeSet
	xtce:[..]ParameterType

xtce:UnitSet

xtce:Unit

XTCE file validation requires that the UnitSet element exist, although it may be empty, e.g., <xtce:UnitSet/>
	I2.1.1.5

	Calibrator Type
	All number Parameter Types:

xtce:FloatDataEncoding

xtceIntegerDataEncoding
	xtce:DefaultCalibrator

xtce:SplineCalibrator or

xtce:PolynomialCalibrator
	I2.1.7.1
or
I2.1.7.2

	Limit Type
	xtce:CommandMetaData

xtce:ParameterTypeSet
	xtce:[..]ParameterType

xtce:AncillaryDataSet

xtce:AncillaryData name=”LimitType” with an XML value of exclusive or inclusive
	I2.1.4.5.1
or

I2.1.6.4.1

	Low Limit
	xtce:CommandMetaData

xtce:ParameterTypeSet
	xtce:FloatParameterType or
xtce:IntegerParameterType

xtce:ValidRange minInclusive
	I2.1.4.6.1
or

I2.1.6.5.1

	High Limit
	xtce:CommandMetaData

xtce:ParameterTypeSet
	xtce:FloatParameterType or
xtce:IntegerParameterType

xtce:ValidRange maxInclusive
	I2.1.4.6.2
or

I2.1.6.5.2

	Encoded Value Limits
	xtce:CommandMetaData

xtce:ParameterTypeSet
	xtce:FloatParameterType or
xtce:IntegerParameterType

xtce:validRangeAppliesToCalibrated=
	I2.1.4.1
or
I2.1.6.1

	
	
	
	

Table I7.2-2 Command Parameter Polynomial Calibrator Attributes (3.4.3.1.2-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Exponent

&

Coefficient
	xtce:CommandMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:PolynomialCalibrator

xtce:Term coefficient= exponent=

	I2.1.7.2.1.1
and
I2.1.7.2.1.2

	
	
	
	

Table I7.2-3 Command Parameter INVERSE Polynomial Calibrator Attributes (3.4.3.1.3-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Exponent

&

Coefficient
	xtce:CommandMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:PolynomialCalibrator

xtce:Term coefficient= exponent=

	I2.1.7.2.1.1
and
I2.1.7.2.1.2

	
	
	
	

Table I7.2-4 Command Parameter Line-SEgment Calibrator Attributes (3.4.3.1.4-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Input Value (raw)

&

Output Value (calibrated)
	xtce:CommandMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:SplineCalibrator

xtce:SplinePoint order=1 raw= calibrated=
	I2.1.7.1.3.1
I2.1.7.1.3.2
I2.1.7.1.3.3

	
	
	
	

Table I7.2-5 Command Parameter INVERSE Line-SEgment Calibrator Attributes (3.4.3.1.5-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Input Value (raw)

&

Output Value (calibrated)
	xtce:CommandMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:SplineCalibrator

xtce:SplinePoint order=2 raw= calibrated=
	I2.1.7.1.3.1
I2.1.7.1.3.2
I2.1.7.1.3.3

	
	
	
	

Table I7.2-6 Command Parameter ENUMERATION Calibrator Attributes (3.4.3.1.6-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Enumeration Label

&

Enumeration Value
	xtce:CommandMetaData

xtce:ParameterTypeSet
	xtce:EnumeratedParameterType

xtce:EnumerationList

xtce:Enumeration value= label=
	I2.1.3.2.1.2
and
I2.1.3.2.1.1

	
	
	
	

Table I7.7 Command PACKING Attributes (3.4.3.2-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Packing Structure Name
	The packing structure is not explicitly named in XTCE.
	
	

	Parameter Name
	xtce:CommandMetaData

xtce:CommandContainerSet
	xtce:CommandContainer

xtce:EntryList

xtce:ParameterRefEntry parameterRef=
	I4.2.1.6.4.1.1

	Start Bit
	xtce:CommandMetaData

xtce:CommandContainerSet

xtce:CommandContainer
	xtce:EntryList

xtce:ParameterRefEntry

xtce:LocationInContainerInBits

xtce:FixedValue
	I4.2.1.6.4.1.2.2

	
	
	
	

Table I7.2-8 Command INSTANCE Attributes (3.4.3.3.1-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Command Name
	xtce:CommandMetaData
	xtce:MetaCommandSet

xtce:MetaCommand name=”CxCUI”
	I4.2.1.1

	System
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand

xtce:CommandContainer
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=”DEMSystem” value=
	I4.2.1.6.5.2

	Type
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand

xtce:CommandContainer
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=”DEMType” value=
	I4.2.1.6.5.2

	Content ID
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand

xtce:CommandContainer
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=”DEMContentID” value=
	I4.2.1.6.5.2

	Content Map ID
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand

xtce:CommandContainer
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=”ContentMapID” value=
	I4.2.1.6.5.2

	Description
	xtce:CommandMetaData
	xtce:MetaCommandSet

xtce:LongDescription
	I4.2.1.6.3

	Short Description
	xtce:CommandMetaData
	xtce:MetaCommandSet

xtce:MetaCommand shortDescription=
	I4.2.1.6.2

	Access Group
	xtce:CommandMetaData
	xtce:MetaCommand

xtce:AncillaryDataSet

xtce:AncillaryData name=”AccessGroup”

The XML value contains the actual group name.
	I4.2.1.4.1

	Packing Structure Name
	The packing structure is not explicitly named in XTCE.
	
	

	
	
	
	

Table I7.2-9 Command Instance Parameter Attributes (3.4.3.3.2-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Parameter Name

&

Value
	xtce:CommandMetaData

xtce:MetaCommandSet
	xtce:MetaCommand

xtce:ArgumentList

xtce:Argument name=”CxCUI” initialValue=
	I4.2.1.5.1.2
and
I4.2.1.5.1.4

	
	
	
	

Table I7.2-10 Command Verifier Attributes (3.4.3.3.3-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Verifier Parameter
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand
	xtce:VerifierSet

xtceCompleteVerifier

xtceComparisonList

xtce:Comparison parameterRef=”CxCUI”
	I4.2.1.7.1.4.1

	Value Is Encoded
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand
	xtce:VerifierSet

xtceCompleteVerifier

xtceComparisonList

xtce:Comparison

xtce:useCalibratedValue
	I4.2.1.7.1.4.3

	Comparison Operator
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand
	xtce:VerifierSet

xtceCompleteVerifier

xtceComparisonList

xtce:Comparison comparisonOperator=
	I4.2.1.7.1.4.4

	Value
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand
	xtce:VerifierSet

xtceCompleteVerifier

xtceComparisonList

xtce:Comparison value=
	I4.2.1.7.1.4.5

	Timeout
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand
	xtce:VerifierSet

xtceCompleteVerifier

xtce:CheckWindow timeToStopChecking=
	I4.2.1.7.1.5.1

	
	
	
	

Table I7.2-11 Command Sequence Attributes (3.4.3.4.1-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Sequence Name
	xtce:CommandMetaData

xtce:MetaCommandSet
	xtce:BlockMetaCommand name=”CxCUI”

	I4.2.2.1

	Sequence Number
	xtce:CommandMetaData

xtce:MetaCommandSet
	xtce:BlockMetaMetaCommand xtce:MetaCommandStepList
	I4.2.2.4

	Command Name
	xtce:CommandMetaData

xtce:MetaCommandSet
	xtce:BlockMetaCommand

xtce:MetaCommandStepList

xtce:MetaCommandStep metaCommandRef=”CxCUI”
	I4.2.2.4.1.1

	
	
	
	

Table I7.2-12 Command Sequence Parameter Attributes (3.4.3.4.2-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Parameter Name

&

Value
	xtce:CommandMetaData

xtce:MetaCommandSet

xtce:MetaCommand

xtce:BlockMetaCommand
	xtce:MetaCommandStepList

xtce:MetaCommandStep

xtce:ArgumentList

xtce:Argument name=”CxCUI” value=””
	I4.2.2.4.1.2.1.1
and
I4.2.2.4.1.2.1.2

	
	
	
	

Table I7.2-13 Telemetry Stream Attributes (3.4.4.1-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	System
	xtce:TelemetryMetaData

xtce:ContainerSet

xtce:SequenceContainer
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=DEMSystem value=
	I3.1.1.8.2

	Type
	xtce:TelemetryMetaData

xtce:ContainerSet
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=DEMType value=
	I3.1.1.8.2

	Content ID
	xtce:TelemetryMetaData

xtce:ContainerSet
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=DEMContentID value=
	I3.1.1.8.2

	Content Map ID
	xtce:TelemetryMetaData

xtce:ContainerSet
	xtce:BaseContainer

xtce:RestrictionCriteria

xtce:ComparisonList

xtce:Comparison parameterRef=ContentMapID value=
	I3.1.1.8.2

	Description
	xtce:TelemetryMetaData

xtce:ContainerSet
	xtce:SequenceContainer

xtce:LongDescription
	I3.1.1.4

	Short Description
	xtce:TelemetryMetaData
	xtce:ContainerSet

xtce:SequenceContainer shortDescription=””
	I3.1.1.2

	Nominal Expected Stream Rate
	xtce:TelemetryMetaData

xtce:ContainerSet
	xtce:SequenceContainer

xtce:AncillaryDataSet

xtce:AncillaryData name=”NominalRate”

the XML value contains the rate expressed as DEMs per second.
	I3.1.1.5.1.1

	Maximum Expected Stream Rate
	xtce:TelemetryMetaData

xtce:ContainerSet
	xtce:SequenceContainer

xtce:AncillaryDataSet

xtce:AncillaryData name=”MaximumRate”

the XML value contains the rate expressed as DEMs per second.
	I3.1.1.5.1.2

	
	
	
	

Table I7.2-14 Telemetry Parameter Attributes (3.4.4.2-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Name
	xtce:TelemetryMetaData
	xtce:ParameterSet

xtce:Parameter name=”CxCUI”
	I2.3.1.1

	Description
	xtce:TelemetryMetaData
	xtce:ParameterSet

xtce:Parameter

xtce:LongDescription
	I2.3.1.3

	Short Description
	xtce:TelemetryMetaData
	xtce:ParameterSet

xtce:Parameter shortDescription=””
	I2.3.1.2

	Data Type
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

One of the items on the right based on parameter type:
	xtce:StringParameterType

xtce:StringDataEncoding encoding=”UTF-8” or “UTF-16”
	I2.1.1.6.2.1

	
	
	xtce:IntegerParameterType

xtce:IntegerDataEncoding encoding = “twosCompliment” or “unsigned”
	I2.1.1.6.4.1

	
	
	xtce:FloatParameterType

xtce:FloatDataEncoding or

xtce:IntegerDataEncoding
	I2.1.1.6.3.1
or
I2.1.1.6.4.1

	
	
	xtce:BinaryParameterType

xtce:BinaryDataEncoding
	I2.1.1.6.5

	Parameter Length
	For String Parameter Types:
xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:StringParameterType
	xtce:StringDataEncoding

xtce:SizeInBits

xtce:Fixed

xtce:FixedValue
	I2.1.1.6.2.2

	
	For Binary Parameter Types:

xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:BinaryParameterType
	xtce:BinaryDataEncoding

xtce:SizeInBits

xtce:Fixed

xtce:FixedValue
	I2.1.1.6.5.1

	
	Other Parameter Types:
xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:[..]ParameterType
	xtce:[..]DataEncoding

xtce:sizeInBits

Time data encodings are under xtce:Encoding element.
	I2.1.1.6.3.2
or
I2.1.1.6.4.2

	Byte Order
	Do not specify
	This attribute is required to be the default: big endian.
	I2.1.1.6.1.2

	Units
	xtce:TelemetryMetaData

xtce:ParameterTypeSet
	xtce:[..]ParameterType

xtce:UnitSet

xtce:Unit

XTCE file validation requires that the UnitSet element exist, although it may be empty, e.g., <xtce:UnitSet>
	I2.1.1.5

	Low Encoded Value Limit
	xtce:TelemetryMetaData

xtce:ParameterTypeSet
	xtce:FloatParameterType or
xtce:IntegerParameterType

xtce:ValidRange minInclusive
	I2.1.4.6.1
or

I2.1.6.5.1

	High Encoded Value Limit
	xtce:TelemetryMetaData

xtce:ParameterTypeSet
	xtce:FloatParameterType or
xtce:IntegerParameterType

xtce:ValidRange maxInclusive
	I2.1.4.6.2
or

I2.1.6.5.2

	Access Group
	xtce:TelemetryMetaData

xtce:ParameterSet
	xtce:Parameter

xtce:AncillaryDataSet

xtce:AncillaryData name=”AccessGroup”

use XML value to name the access group
	I2.3.1.4.2

	Confidential Data
	xtce:TelemetryMetaData

xtce:ParameterSet
	xtce:Parameter

xtce:AncillaryDataSet

xtce:AncillaryData name=”ConfidentialData”

use XML value value of true or false
	I2.3.1.4.1

	Calibrator Type
	All numeric Paraemter Types:

xtce:FloatDataEncoding

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:SplineCalibrator or

xtce:PolynomialCalibrator
	I2.1.7.1
or
I2.1.7.2

	
	
	
	

Table I7.2-15 Parameter Sampling Attributes (3.4.4.3-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	System
	Used to correlate to correct packet. This item is represented in the XTCE file as part of the Telemetry Stream Attributes and is not repeated for each parameter.
	
	N/A

	Type
	Used to correlate to correct packet. This item is represented in the XTCE file as part of the Telemetry Stream Attributes and is not repeated for each parameter.
	
	N/A

	Instance
	Used to correlate to correct packet. This item is represented in the XTCE file as part of the Telemetry Stream Attributes and is not repeated for each parameter.
	
	N/A

	Content Map ID
	Used to correlate to correct packet. This item is represented in the XTCE file as part of the Telemetry Stream Attributes and is not repeated for each parameter.
	
	N/A

	Start Bit
	xtce:TelemetryMetaData

xtce:ContainerSet

xtce:SequenceContainer
	xtce:EntryList

xtce:ParameterRefEntry

xtce:LocationInContainerInBits

xtce:FixedValue
	I3.1.1.7.1.2.2

	Number of Samples
	xtce:TelemetryMetaData

xtce:ContainerSet

xtce:SequenceContainer
	xtce:EntryList

xtce:ParameterRefEntry

xtce:RepeatEntry

xtce:Count

xtce:FixedValue
	I3.1.1.7.1.3.1.1

	Sample Offset
	xtce:TelemetryMetaData

xtce:ContainerSet

xtce:SequenceContainer
	xtce:EntryList

xtce:ParameterRefEntry

xtce:RepeatEntry

xtce:Offset

xtce:FixedValue
	I3.1.1.7.1.3.2.1

	
	
	
	

Table I7.2-16 Content Switch Attributes (3.4.4.4-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Switch Parameter
	Not supported in this version of required practices.
	
	N/A

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Comparison Operator
	Not supported in this version of required practices.
	
	N/A

	Value
	Not supported in this version of required practices.
	
	N/A

	
	
	
	

Table I7.2-17 Telemetry Parameter Polynomial Calibrator Attributes (3.4.4.5-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Exponent

&

Coefficient
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:PolynomialCalibrator

xtce:Term coefficient= exponent=

	I2.1.7.2.1.1
and
I2.1.7.2.1.2

	
	
	
	

Table I7.2-18 Telemetry Parameter Inverse Polynomial Calibrator Attributes (3.4.4.6-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Exponent

&

Coefficient
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:PolynomialCalibrator

xtce:Term coefficient= exponent=

	I2.1.7.2.1.1
and
I2.1.7.2.1.2

	
	
	
	

Table I7.2-19 Telemetry Parameter Line-SEgment Calibrator Attributes (3.4.4.7-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Input Value (raw)

&

Output Value (calibrated)
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:SplineCalibrator

xtce:SplinePoint raw= calibrated=

	I2.1.7.1.3.1
I2.1.7.1.3.2
I2.1.7.1.3.3

	
	
	
	

Table I7.2-20 Telemetry Parameter Inverse Line-SEgment Calibrator Attributes (3.4.4.8-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Input Value (raw)

&

Output Value (calibrated)
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

xtce:FloatDataEncoding

or

xtce:IntegerParameterType

xtce:IntegerDataEncoding
	xtce:DefaultCalibrator

xtce:SplineCalibrator

xtce:SplinePoint raw= calibrated=

	I2.1.7.1.3.1
I2.1.7.1.3.2
I2.1.7.1.3.3

	
	
	
	

Table I7.2-21 Telemetry Parameter ENUMERATION Calibrator Attributes (3.4.4.9-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Enumeration Label

&

Enumeration Value
	xtce:TelemetryMetaData

xtce:ParameterTypeSet
	xtce:EnumeratedParameterType

xtce:EnumerationList

xtce:Enumeration value= label=
	I2.1.3.2.1.2
and
I2.1.3.2.1.1

	
	
	
	

Table I7.2-22 Parameter Static Alarm Attributes (3.4.4.10.1-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Trigger Count
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	xtce:DefaultAlarm minViolations
	I2.1.8.2.1

	Advisory Low Limit

&

Advisory High Limit
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	xtce:DefaultAlarm

xtce: StaticAlarmRanges

xtce:WatchRange minInclusive= maxInclusive=
	I2.1.8.2.2.1.2.1
I2.1.8.2.2.1.2.2
I2.1.8.2.2.2.3.1
I2.1.8.2.2.2.3.2

	Caution Low Limit

&

Caution High Limit
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	xtce:DefaultAlarm

xtce:StaticAlarmRanges

xtce:WarningRange minInclusive= maxInclusive=
	I2.1.8.2.2.1.3.1
I2.1.8.2.2.1.3.2
I2.1.8.2.2.2.4.1
I2.1.8.2.2.2.4.2

	Warning Low Limit

&

Warning High Limit
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	xtce:DefaultAlarm

xtce:StaticAlarmRanges

xtce:CriticalRange minInclusive= maxInclusive=
	I2.1.8.2.2.1.4.1
I2.1.8.2.2.1.4.2
I2.1.8.2.2.2.5.1
I2.1.8.2.2.2.5.2

	Emergency Low Limit

&

Emergency High Limit
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	xtce:DefaultAlarm

xtce:StaticAlarmRanges

xtce:SevereRange minInclusive= maxInclusive=
	I2.1.8.2.2.1.5.1
I2.1.8.2.2.1.5.2
I2.1.8.2.2.2.6.1
I2.1.8.2.2.2.6.2

	Limit Type
	For outside alarms only:
xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	For outside alarms only:
xtce:DefaultAlarm

xtce:CustomAlarm name=”OutsideAlarm".
	I2.1.8.2.2.2.1

	
	
	
	

Table I7.2-23 Parameter Change Alarm Attributes (3.4.4.10.2-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Positive Delta
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	xtce:DefaultAlarm

xtce:ChangeAlarmRanges

xtce:SeverRange maxInclusive=
	I2.1.8.2.3.4.1.2

	Negative Delta
	xtce:TelemetryMetaData

xtce:ParameterTypeSet

xtce:FloatParameterType

or

xtce:IntegerParameterType
	xtce:DefaultAlarm

xtce:ChangeAlarmRanges

xtce:SeverRange minInclusive=
	I2.1.8.2.3.4.1.1

	
	
	
	

Table I7.2-24 Parameter Enumeration Alarm Attributes (3.4.4.10.3-1)

	 Attribute
	XTCE Major Elements
	XTCE Sub Element(s)/Attriubte
	RP Reference

	Set Number
	Not supported in this version of required practices.
	
	N/A

	Alarm Enumeration Label
	xtce:TelemetryMetaData

xtce:ParameterTypeSet
	xtce:EnumerationParameterType

xtce:DefaultAlarm

xtce:EnumerationAlarmList

xtce:EnumerationAlarm enumerationValue=”"
	I2.1.8.1.3.1.2

	Alarm Category
	xtce:TelemetryMetaData

xtce:ParameterTypeSet
	xtce:EnumerationParameterType

xtce:DefaultAlarm

xtce:EnumerationAlarmList

xtce:EnumerationAlarm alarmLevel=”watch", “warning”, “critical”, or “severe”
	I2.1.8.1.3.1.1

	
	
	
	

appendix J
C3I Information Structures

J1
Enumerations

J1.1. C3I: Command data format type enumeration

TBD
J1.2. C3I: Command data integrity check type enumeration

TBD
J1.3. C3I: Command initiation response type enumeration

TBD
J1.4. C3I: Command packing map type enumeration

TBD
J1.5. C3I: Command request type enumeration

TBD
J1.6. C3I: Command response type enumeration

TBD
J1.7. C3I: Command script status type enumeration

TBD
J1.8. C3I: Command status type enumeration

TBD
J1.9. C3I: Command characteristic

Table J1.9-1: Command Characteristic Enumeration

	Literal
	Tag
	Description
	Constellation Name

	abort
	1
	Command communication exchange termination in a controlled manner.
	c3i:AbortCommandCommunication

	rt-command
	2
	Real-time command communication exchange to be executed upon reception.
	c3i:RealtimeCommandCommunication

	script
	3
	Communication updates to adjustable routine of commands.
	c3i:ScriptCommandCommunication

	timed-cmd
	4
	Command communication to be executed at a specific time.
	c3i:TimedCommandCommunication

J1.10. C3I: Command verification action type enumeration

TBD
J1.11. C3I: DEM fragment flag enumeration

Table J1.11-1: DM Fragment Flag Enumeration

	Literal
	Tag
	Description
	Constellation Name

	nonfragmented
	0
	Non-fragmented DEM.
	c3i:nonfragmentedDEM

	fragmented
	1
	Fragmented DEM.
	 c3i:fragmentedDEM

J1.12. C3I: DEM-Message type code enumeration

DEM-Message Type Code is an unsigned integer that represents specific message type.
Table J1.12-1: DEM-Message Type Code Enumeration

	Literal
	Tag
	Description
	Constellation Name

	reserved
	0
	Zero is reserved tag.
	

	command
	1
	DEM Command Code.
	c3i:DEM-MessageCommandType

	telemetry
	2
	DEM Telemetry Code.
	c3i:DEM-MessageTelemetryType

	reserved_1
	3
	Reserved for future enumerations.
	

J1.13. C3I: DEM-Operation code enumeration

Operation Code is an unsigned integer that indicates the operational intent for the message data.
Table J1.13-1: DEM-Operation Code Enumeration

	Literal
	Tag
	Description
	Constellation Name

	messageRequest
	0
	Message Request Type
	c3i:DEM-MessageRequestCode

	message
	1
	MessageType
	c3i:DEM-MessageCode

	messageWithEchoRequest
	2
	Message with Echo Request Type
	c3i:DEM-MessageWithEchoRequestCode

	messageEcho
	3
	Message Echo Type
	C3i:DEM-MessageEchoCode

	metadataRequest
	4
	Metadata Request Type.
	C3i:DEM-MetadataRequestCode

	metadataReport
	5
	Metadata Report Type.
	c3i:DEM-MetadataReportCodee

	reserved1
	6
	Reserved for future Message DataTypes.
	

	reserved2
	7
	Reserved for future Message DataTypes.
	

J1.14. C3I: DEM-Origin code enumeration
Table J1.14-1: DEM-Origin Code Enumeration

	Literal
	Tag
	Description
	Constellation Name

	live
	0
	Live Origin of Data.
	c3i:DEM-OriginCode_live

	replay
	1
	Replay Origin of Data.
	c3i:DEM-OriginCode_replay

	test
	2
	Test Origin of Data.
	c3i:DEM-OriginCode_test

	simulation
	3
	Simulation Origin of Data.
	c3i:DEM-OriginCode_simulation

	reserved1
	4
	Reserved Origin of Data.
	

	reserved2
	5
	Reserved Origin of Data.
	

	reserved3
	6
	Reserved Origin of Data.
	

	reserved4
	7
	Reserved Origin of Data.
	

J1.15. C3I: epoch code enumeration

Epoch is the epoch for the time specified by Seconds.
Table J2.15-1: EPOCH Code Enumeration

	Literal
	Tag
	Description
	Constellation Name

	epoch1970
	0
	Jan 1,1970 @ midnight
	c3i:DEM-Epoch1970

	epoch2000
	1
	Jan 1,2000 @ midnight
	c3i:DEM-Epoch2000

	reserved1
	2
	Reserved Epoch.
	c3i:DEM-EpochReserved_1

	reserved2
	3
	Reserved Epoch.
	c3i:DEM-EpochReserved_2

J1.16. C3I: time scale enumeration

Scale is the time scale for the time specified by Seconds.
Table J1.16-1: Time Scale Enumeration

	Literal
	Tag
	Description
	Constellation Name

	utc
	0
	Coordinated Universal Time.
	c3i:DEM-TimeScale-UTC

	tai
	1
	International Atomic Time (Temps Atomique International).
	c3i:DEM-TimeScale-TAI

	reserved1
	2
	Reserved Time Type.
	c3i:DEM-TimeScale -reserved_1

	reserved2
	3
	Reserved Time Type.
	c3i:DEM-TimeScale -reserved_2

J1.17. C3I: Data exchange action type enumeration

A specification of the types of action associated with sending or receiving telemetry data, telemetry metadata or commands or command metadata.
Table J1.17-1: C3I Data Exchange Enumeration

	Literal
	Tag
	Description
	Constellation Name

	receiveData
	1
	Receive a group of telemetry parameter values.
	c3i:ReceiveTelemetryRequest

	receiveMetadata
	2
	Receive metadata about a group of telemetry parameter values.
	c3i:ReceiveTelemetryMetadataRequest

	sendData
	3
	Send a group of telemetry parameter values.
	c3i:SendTelemetryRequest

	sendMetadata
	4
	Send metadata about a group of telemetry parameter values.
	c3i:SendTelemetryMetadataRequest

J1.18. C3I: Data exchange trigger type enumeration
Table J1.18-1: C3I Data Exchange Trigger Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	telemetry
	1
	Arrival of telemetry parameter values.
	c3i:ArrivalOfTelemetry

	metadata
	2
	Arrival of telemetry metadata parameter values.
	c3i:ArrivalOfTelemetryMetadata

	operational
	3
	Operational decision.
	c3i:OperationalDecision

J1.19. C3I: File exchange type enumeration

TBD
J1.20. C3I: information exchange type enumeration
Table J1.20-1: C3I Information Exchange Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	abort
	1
	Command Communication exchange to abort or terminate flight in a controlled manner.
	c3i:AbortCommandCommunication

	rt-command
	2
	Real-time command communication to be executed upon reception.
	c3i:RealtimeCommandCommunication

	script
	3
	Update to adjustable routine of commands.
	c3i:ScriptCommunication

	timed-cmd
	4
	Commands to be executed at a specified time.
	c3i:TimedCommandCommunication

	emi
	21
	Engineering motion imagery exchange.
	c3i:EngineeringMotionImageryCommunication

	private
	22
	Motion imagery communication deemed private for crew personal exchanges (like medical or video conferencing).
	c3i:PrivateMotionImageryCommunication

	proximity
	23
	Video communication to support docking and undocking.
	c3i:ProximalMotionImageryCommunication

	pao
	24
	Engineering motion imagery that is used selectively by the Public Affairs Office (PAO).
	c3i:PublicAffairsOfficeImageryCommunication

	eng-telemetry
	41
	Engineering telemetry exchange.
	c3i:EngineeringTelemetryCommunication

	rt-telemetry
	42
	Real-time telemetry exchanges.
	c3i:RealtimeTelemetryCommunication

	ag1
	61
	Air-to-Ground #1 voice loop that is used for pilot and co-pilot exchanges.
	c3i:AirToGroundVoiceLoopCommunication_1

	ag2
	62
	Air-to-Ground #2 voice loop that is used for pilot and co-pilot exchanges.
	c3i:AirToGroundVoiceLoopCommunication_2

	contingency
	63
	Contingengy voice link communications.
	c3i:ContingencyCommunication

	Dissimilar
	64
	Contingency voice link that is used to back-up dissimilar communications for increased availability of voice communications.
	c3i:DissimilarContingencyCommunication

J1.21. C3I: Information type enumeration
Table J1.21-1: C3I Information Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	dfi
	1
	Development Flight Instrumentation Telemetry is telemetry gathered from a secondary sensor system designed for development flights.
	 c3i:DevelopmentFlightInstrumentationTelemetryType

	normal
	2
	Command - A directive to another element specified in terms of an action. The action can have associated arguments. If successful, the action will affect the state of an element. Commands can be further categorized as:
abort - Abort/Flight termination;realtime - Real-time Command - to be executed upon reception;
scripts - updates to adjustable routine of commands;
timed - Time execute commands - command to be executed at specified time.
	c3i:CommandInformationType

	ofi
	3
	Operational Flight Instrumentation.
	c3i:EngineeringOperationalFlightInstrumentationTelemetryType

	file
	4
	File Transfer - Any data transmissions from one System to another in the form of a file using CFTP as the exchange mechanism.
	c3i:FileTransferType

	metadata
	5
	Data about data, including information describing aspects of actual data items, such as name, type, format, content, and other descriptive information. In a data exchange context, it can be a set of descriptive properties about a specific data exchange topic. These properties are typically values that do not change very often.
	c3i:MetaDataInformationType

	motionimagery
	6
	Transient imagery and sound captured via electronic sensors and converted to data for retention and observation. Motion imagery may utilize portions of what is currently referred to as traditional video or television architectures and systems. Future television or motion imagery distribution will be required to be in a digital format that is compliant with the Advanced Television Standards Committee (ATSC) standard. Motion Imagery can be categorized into:
eng - Engineering motion imagery that is immediately transmitted stored and transmitted over time or recovered;
pao - Engineering video that is used selectively by the Public Affairs Office (PAO);
proximity - Video to support docking and undocking ;
private - Private video for crew personal exchanges like medical or video conferencing.
	c3i:MotionImageryInformationType

	navigation
	7
	Ranging and radiometric data obtained from the RF link between two Systems.
	c3i:NavigationInformationType

	network
	8
	Network related infrastructure function primarily required to support IP based communications e.g. DNS, ARP, etc.
	c3i:NetworkFunctionInformationType

	ofi-telemetry
	9
	Operational Flight Instrumentation telemetry is any down-linked or recorded telemetry gathered from operational sensors.
	c3i:NetworkFunctionInformationOperationalFlightInstrumentationTelemetryType

	telemetry
	10
	The measurement and transmission of data by radio or other means from remote sources to receiving stations for recording and analysis.
	c3i:TelemetryInformationType

	time
	11
	The exchange of a reference time scale traceable to Coordinated Universal Time (UTC) between two Systems
	c3i:TimeInformationType

	voice
	12
	Voice communication between two or more stakeholders like crew and mission control operators.
	c3i:VoiceInformationType

	eng-telemetry
	41
	Automatic monitoring, alerting and record-keeping for engineering data.
	c3i:EngineeringTelemetryType

	rt-telemetry
	42
	Real-time telemetry parameter values.
	c3i:RealTimeCriticalTelemetryType

J1.22. C3I: Meta data exchange type enumeration

TBD
J1.23. C3I: Motion imagery exchange type enumeration
Table J1.23-1: C3I Motion Imagery Exchange Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	emi
	21
	Engineering motion imagery.
	c3i:EngineeringMotionImageryType

	private
	22
	Motion imagery communication deemed private for crew personal exchanges (like medical or video conferencing).
	c3i:PrivateVideoCommunicationType

	proximity
	23
	communication to support docking and undocking.
	c3i:ProximityVideoCommunicationType

	pao
	24
	Engineering motion imagery that is used selectively by the Public Affairs Office (PAO).
	c3i:PublicAffairsOfficeImageryType

J1.24. C3I: Navigation data exchange type enumeration

TBD
J1.25. C3I: Sample type enumeration
Table J1.25-1: C3I Sample Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	single
	1
	As the name implies, a parameter with a Single Sample sampling type only has one sample in each instance of a mechanism data unit. The location and length of the parameter remains constant for a given DEM topic.
	 c3i:SingleSampleType

	multiple
	2
	Multiple Sample sampling type is defined when multiple samples of parameter exist within each instance of a mechanism data unit. A parameter with a Multiple Sample sampling type contains an integer number of samples of the same parameter. The location of the first sample of the parameter within the mechanism data unit remains constant across DEMs with the same topic. The number of samples and the offsets between samples also remain constant for a given DEM topic.
	 c3i:MultipleSampleType

J1.26. C3I: Telemetry exchange type enumeration
Table J1.26-1: C3I Telemetry Exchange Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	eng-telemetry
	41
	Automatic monitoring, alerting and record-keeping for engineering data.
	c3i:EngineeringTelemetryExchangeType

	rt-telemetry
	42
	Real-time telemetry parameter values.
	c3i:RealTimeCriticalTelemetryExchangeType

J1.27. C3I: Telemetry type Enumeration

TBD
J1.28. C3I: Time data exchange type enumeration

TBD
J1.29. C3I: Transport priority request enumeration
Table J1.29-1: C3I Transport Priority Request Enumeration

	Literal
	Tag
	Description
	Constellation Name

	low
	0
	Low priority request.
	c3i:LowPriority

	normal
	1
	Normal priority request.
	c3i:NormalPriority

	high
	2
	High priority request.
	c3i:HighPriority

	express
	3
	Express priority request.
	c3i:ExpressPriority

J1.30. C3I: Transport reliability request type enumeration
Table J1.30-1: C3I Transport Reliability Request Enumeration

	Literal
	Tag
	Description
	Constellation Name

	besteffort
	0
	Describes a data transportation in which the data transportation does not provide any guarantees.
	c3i:BestEffortTransportReliability

	reliable
	1
	A reliable, connection-oriented, transport mechanism
	c3i:ReliableTransportReliability

J1.31. C3I: Voice data exchange type enumeration

Table J1.31-1: C3I Voice Data Exchange Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	ag1
	61
	Air-to-Ground #1 voice loop that is used for pilot and co-pilot exchanges.
	c3i:AirToGroundVoiceLoopCommunication_1

	ag2
	62
	Air-to-Ground #2 voice loop that is used for pilot and co-pilot exchanges.
	c3i:AirToGroundVoiceLoopCommunication_2

	contingency
	63
	Contingengy voice link communications.
	c3i:ContingencyCommunication

	Dissimilar
	64
	Contingency voice link that is used to back-up dissimilar communications for increased availability of voice communications.
	c3i:DissimilarContingencyCommunication

J1.32. Communications: Channel type enumeration

Channel types differentiate different uses of communication channels
Table J1.32-1: Communication Channel Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	data
	1
	Data communication channel.
	comms:DataChannelType

	video
	2
	Video communication channel.
	comms:VideoChannelType

	voice
	3
	Voice communication channel.
	comms:VoiceChannelType

	mixed
	9
	Mixed communication channel.
	comms:MixedChannelType

J1.33. Communications: Channelization configuration type

Channelization Configuration data type describes transmit/receive frequency assignments and spectrum characteristics for multiple frequency channel pairs (channels), allowing simultaneous interoperation between systems on a communications networks. Information on channel management can be found in the NTIA Manual of Regulations and Procedures for Federal Radio Frequency Management.

J1.34. Communications: Communication link status type
Table J1.34-1: Communication Link Status Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	Available
	1
	Available communication channel.
	comms:AvailableCommunicationLinkType

	Unavailable
	2
	Unavailable communication channel.
	comms:UnavailableCommunicationLinkType

	Operational
	3
	Operational communication channel.
	comms:OperationalCommunicationLinkType

	Non-Operational
	4
	Non-operational communication channel.
	comms:NonOperationalCommunicationLinkType

	Forward Link Available
	5
	Forward Link communication channel available.
	comms:ForwardLinkCommunicationAvailableLinkType

	Forward Link Unavailable
	6
	Forward Link communication channel unavailable.
	comms:ForwardLinkCommunicationUnvailableLinkType

J1.35. Communications: Communication link type

TBD
J1.36. Communications: Communication mode

TBD
J1.37. Communications: DHCP-Client identifier type

DHCP (Dynamic Host Configuration Protocol) Client Identifier is an identifier to identify the client itself to the DHCP Server. Client can be, for example, a MAC (Media Access Control) address. Sometimes it can also be a manually configured address.

J1.38. Communications: DHCP-Status type

Table J1.38-1: DHCP-Status Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	Not Reachable
	1
	DHCP is not reachable.
	 DHCP-NonReachableStatus

	Reachable
	2
	DHCP is reachable.
	DHCP-ReachableStatus

J1.39. Communications: Error correcting code type
Table J1.39-1: Error Correcting Code Enumeration

	Literal
	Tag
	Description
	Constellation Name

	bch
	1
	A BCH (Bose, Ray-Chaudhuri, Hocquenghem) code is an error-correcting code that is much studied within coding theory. In technical terms a BCH code is a multilevel, cyclic, error-correcting, variable-length digital code used to correct multiple random error patterns. BCH codes may also be used with multilevel phase-shift keying whenever the number of levels is a prime number or a power of a prime number. A BCH code in 11 levels has been used to represent the 10 decimal digits plus a sign digit.
	comms:BHC-CodeType

	hamming
	2
	A Hamming code is a linear error-correcting code named after its inventor, Richard Hamming. Hamming codes can detect and correct single-bit errors. In other words, the Hamming distance between the transmitted and received code-words must be zero or one for reliable communication.
	Comms:HammingCodeType

	ldpc
	3
	LDPC is a low-density parity-check code is an error correcting code used for transmitting a message over a noisy transmission channel.
	comms:LowDensityParityCheckingCodeType

	reedsolomon
	4
	Reed–Solomon error correction is an error-correcting code that works by oversampling a polynomial constructed from the data. The polynomial is evaluated at several points, and these values are sent or recorded. By sampling the polynomial more often than is necessary, the polynomial is over-determined. As long as "many" of the points are received correctly, the receiver can recover the original polynomial even in the presence of a "few" bad points.
	comms:ReedSolomonCodeType

J1.40. Communications: IP-Authentication header type

The IP Authentication Header (AH) is used to provide connectionless integrity and data origin authentication for IP datagrams, and to provide protection against replays.
Specified in RFC 2402

J1.41. Communications: IP-Encapsulating security payload eSP-Type

The Encapsulating Security Payload (ESP) header provides security services in IPv4 and IPv6, and can be used standalone, in association with the IP authentication Header (AH), or with tunneling.

ESP is specified in RFC 2406

J1.42. Communications: IP-Forwarding table mIB-Type

IP Forwarding Table MIB is specified in rfc2096.

J1.43. Communications: IP-Header type

TBD
J1.44. Communications: IP-Network address type

TBD
J1.45. Communications: IP-Parameter type

TBD
J1.46. Communications: Link type enumeration
Table J1.46-1: Communication Link Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	point2point
	1
	A communications medium with exactly two endpoints and no data or packet formatting.
	comms:PointToPointLinkType

	multipoint
	2
	A communications medium with multi-node communication channels.
	comms:MultiPointLinkType

	multipoint-proximity
	3
	A communications medium with multi-node communication channels in a close geographical proximity of each other.
	comms:MultiPointProximityLinkType

J1.47. Communications: Modulation channel type enumeration

TBD
J1.48. Communications: Modulation scheme type enumeration

TBD
J1.49. Communications: Modulation type enumeration
Table J1.49-1: Communication Modulation Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	bpsk
	 1
	Binary phase-shifting modulation.
	comms:BPSK-ModulationType

	sqpn
	2
	Staggered quadriphase psuedonoise modulation.
	comms:SQPN-ModulationType

	sqpsk
	3
	Staggered quadrature phase-shifting modulation.
	comms:SQPSK-ModulationType

J1.50. Communications: Per hop behavior identification code type enumeration

TBD
J1.51. Communications: Polarization type enumeration

TBD
J1.52. Communications: Retransmission type

TBD
J1.53. Communications: Routing information status type

TBD
J1.54. Communications: Routing table change type

TBD
J1.55. Communications: Spectrum type enumeration
Table J1.55-1: Communication Spectrum Type Enumeration

	Literal
	Tag
	Description
	Constellation Name

	cband
	1
	C-band frequency band for commercial satellite communications (3.4 gigahertz).
	comms:C-BandSpectrumType

	kband
	2
	Ka-band frequency band for satellite and space vehicle communications.
	comms:Ka-BandSpectrumType

	sband
	3
	S-band frequency for communications (2.5 to 2.7 gigahertz).
	comms:S-BandSpectrumType

J1.56. Communications: TCP-Type

TBD
J1.57. Communications: Voice encoding enumeration

TBD
J2. Information Types

J2.1. Basic profile

A 'Profile'.

Basic profile

	c3i:
BasicProfile
	Type
	Description
	#
	Permissible
Values

	c3i:
Profile
	Super Class
	A kind of "Profile"
	-
	-

J2.2. CEV-CEV Communication

A 'Communication Exchange Link'.

CEV-CEV Communication

	c3i:
CEV-CEV-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

J2.3. CEV-EVA Communication

A 'Communication Exchange Link'.

CEV-EVA Communication

	c3i:
CEV-EVA-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

J2.4. CEV-GS Communication

A 'Communication Exchange Link'.

CEV-GS Communication

	c3i:
CEV-GS-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

J2.5. CEV-ISS Communication

A 'Communication Exchange Link'.

CEV-ISS Communication

	c3i:
CEV-ISS-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

J2.6. CEV-MS Communication

A 'Communication Exchange Link'.

CEV-MS Communication

	c3i:
CEV-MS-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

	c3i:
communicates
	Association
	
	-
	-

	cxda:
receivingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that receives a data exchange. Receiving Party is synonymous with 'Consumer'.
	0..n
	cx:
MissionOperations

	cxda:
sendingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that sends a data exchange. Sending Party is synonymous with 'Producer'.
	0..n
	cx:
CrewExplorationVehicle

J2.7. CEV-ROCC Communication

A 'Communication Exchange Link'.

CEV-ROCC Communication

	c3i:
CEV-ROCC-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

	cxda:
receivingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that receives a data exchange. Receiving Party is synonymous with 'Consumer'.
	0..n
	cx:
RangeOperations

	cxda:
sendingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that sends a data exchange. Sending Party is synonymous with 'Producer'.
	0..n
	cx:
CrewLaunchVehicle

J2.8. CLV-CEV Communication

A 'Communication Exchange Link'.

CLV-CEV Communication

	c3i:
CLV-CEV-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

J2.9. CLV-GS Communication

A 'Communication Exchange Link'.

CLV-GS Communication

	c3i:
CLV-GS-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

J2.10. CLV-MS Communication

A 'Communication Exchange Link'.

CLV-MS Communication

	c3i:
CLV-MS-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

	cxda:
receivingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that receives a data exchange. Receiving Party is synonymous with 'Consumer'.
	0..n
	cx:
MissionOperations

	cxda:
sendingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that sends a data exchange. Sending Party is synonymous with 'Producer'.
	0..n
	cx:
CrewLaunchVehicle

J2.11. CLV-ROCC Communication

A 'Communication Exchange Link'.

CLV-ROCC Communication

	c3i:
CLV-ROCC-Communication
	Type
	Description
	#
	Permissible
Values

	c3i:
CommunicationExchangeLink
	Super Class
	A kind of "Communication Exchange Link"
	-
	-

J2.12. Capability

J2.13. Command

A 'Identifiable Concept'.

Command

	c3i:
Command
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.14. Command Occurrence

A Command Slot holds information required to describe a single command instance and its poistion in the command sequence.

Command Occurrence

	c3i:
CommandOccurrence
	Type
	Description
	#
	Permissible
Values

	c3i:
CommandAndParameterData
	Super Class
	A kind of "DEM-Data field"
	-
	-

	c3i:
commandName
	Association
	The command name in the form of a CxSID. This can be translated (or alternatively) specified as a CxCUI.
	1
	cx:
CxSID

	c3i:
hasParameterValuePair
	Association
	
	0..n
	c3i:
ParameterValuePair

	c3i:
command-sequenceNumber
	Attribute
	
	1
	xsd:
nonNegativeInteger

J2.15. Command client profile

A 'Identifiable Concept'.

Command client profile

	c3i:
CommandClientProfile
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.16. Command data format type

A 'Tagged enumeration literal'.

Command data format type

	c3i:
CommandDataFormatType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.17. Command data integrity check type

A 'Tagged enumeration literal'.

Command data integrity check type

	c3i:
CommandDataIntegrityCheckType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.18. Command exchange type

A 'Information exchange type' with the following instance(s): 'Abort command communication', 'Command information', 'Realtime command communication', 'Script communication' and 'Timed command communication'.

Command exchange type

	c3i:
CommandExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

	c3i:
forExchangeOf
	Association
	
	-
	-

J2.19. Command initation response type

A 'Tagged enumeration literal'.

Command initation response type

	c3i:
CommandInitationResponseType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.20. Command log

A 'Identifiable Concept'.

Command log

	c3i:
CommandLog
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.21. Command mechanism

A 'Data exchange mechanism'.

Command mechanism

	c3i:
CommandMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

J2.22. Command metering rate

A 'Identifiable Concept'.

Command metering rate

	c3i:
CommandMeteringRate
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.23. Command packing map type

A 'Tagged enumeration literal'.

Command packing map type

	c3i:
CommandPackingMapType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.24. Command parameter

A 'Controlled Property'.

Command parameter

	c3i:
CommandParameter
	Type
	Description
	#
	Permissible
Values

	system:
ControlledProperty
	Super Class
	A kind of "Controlled Property"
	-
	-

J2.25. Command path

A 'Identifiable Concept'.

Command path

	c3i:
CommandPath
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.26. Command request type

A 'Tagged enumeration literal'.

Command request type

	c3i:
CommandRequestType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.27. Command response type

A 'Tagged enumeration literal'.

Command response type

	c3i:
CommandResponseType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.28. Command script status type

A 'Tagged enumeration literal'.

Command script status type

	c3i:
CommandScriptStatusType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.29. Command script type

A 'Identifiable Concept'.

Command script type

	c3i:
CommandScript
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.30. Command sequence order

For each command sequence, the names of the commands within the sequence (Command Name) are specified, along with their positions within the sequence (Sequence Number). The name of the Command Sequence follows the conventions of the CxDA Naming and Identifier Rules, CxP 70172-01. Multiple commands may be specified for a given command sequence. A single command may occur more than once in a given command sequence. Each command is specified as a 'CommandOccurrence'. The commands themselves are defined by the Command Instance Metadata, as defined in CxP 70172-04, CxDA Metadata Specifications.

Command sequence order

	c3i:
CommandSequence
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

	c3i:
hasCommandOccurrence
	Association
	A reference to one or more command specifications.
	0..n
	c3i:
CommandOccurrence

	c3i:
sequenceNumber
	Attribute
	Number indicating the order of the commands within the sequence. This is an unsigned Integer. Multiple commands may be specified for a given command sequence. Each Sequence Number value for a given command sequence must be unique.
Sequence Number values for a given Sequence Name must begin at 1 and be incremented by 1 for each command in the sequence.
	1
	-

J2.31. Command server profile

A 'Identifiable Concept'.

Command server profile

	c3i:
CommandServerProfile
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.32. Command status type

A 'Tagged enumeration literal'.

Command status type

	c3i:
CommandStatusType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.33. Command store type

A 'Identifiable Concept'.

Command store type

	c3i:
CommandStore
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.34. Command structure

A command is construced from an ordered set of command instances.

Command structure

	c3i:
CommandStructure
	Type
	Description
	#
	Permissible
Values
	Field
Pos.

	nasa:
CxSID
	Attribute
	The Constellation Short Identifier, CxSID, is an abbreviated identifier for a Constellation Entity. The rules for constructing CxSIDs are documented in the CxDA NIR.
	1
	cx:
CxSID
	1

	c3i:
hasCommandInstance
	Association
	a reference to a command instance.
	0..n
	c3i:
CommandOccurrence
	2

J2.35. Command verification action type

A 'Tagged enumeration literal'.

Command verification action type

	c3i:
CommandVerificationActionType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.36. Command verifier

A Command Verifier is, as the name implies, a way of verifying that a command is successfully executed. Each telemetry parameter used for verification and the expected value of each parameter are specifed. The specified comparison must resolve to true for positive verification of the command’s execution. If multiple verifiers are defined for a single command, all comparisons must resolve to true for positive verification of the command’s execution.

Command verifier

	c3i:
CommandVerifier
	Type
	Description
	#
	Permissible
Values

	c3i:
hasComparisionOperator
	Association
	An operator used for making the comparison of the parameters used in the verification. The operator must be one of the following, as defined in CxP 70172-04, CxDA Metadata Specifications:
== - equal to
!= - not equal to
< - less than
<= - less than or equal to
> - greater than
>= - greater than or equal to
	1
	maths:
Operator

	c3i:
hasVerificationParameter
	Association
	The name of the telemetry parameter to be checked to verify the successful execution of the command.
	1..n
	system:
TelemeteredProperty

	c3i:
timeout
	Attribute
	Number of seconds after sending the command to continue checking the telemetry parameter for a positive verification.
	1
	xsd:
double

	data:
isEncoded
	Attribute
	Indicates whether the Verifier Parameter value provided is the encoded value or engineering unit value. A value of 'True' means that the value is encoded. This is the comparison made on uncalibrated parameter value. A value of 'False' means that the value is in engineering units. The comparison is made on a calibrated parameter value. If not specified, value is assumed to be False.
	0..1
	xsd:
boolean

	data:
numericValue
	Attribute
	Value to which the Verifier Parameter value is compared. The encoded form of the value must be consistent with the Data Type specified for the telemetry parameter, as defined in CxP 70172-05, CxDA Data Type Specifications.
	1
	-

J2.37. Commanded system

A 'Telemetered system'.

Commanded system

	c3i:
CommandedSystem
	Type
	Description
	#
	Permissible
Values

	c3i:
TelemeteredSystem
	Super Class
	A kind of "Telemetered system"
	-
	-

J2.38. Communication Exchange Link

A Constellation Communication Pair is a set of possible communications channels between two CxP elements (e.g. CEV, CLV, MS) for the exchange of information. There are subclasses for every sending and receiving pair of communicating elements. An instance of a Communication Pair is an actual physical communications setup. Prototypical instances exist to serve as specifications for actual instances.

Communication Exchange Link

	c3i:
CommunicationExchangeLink
	Type
	Description
	#
	Permissible
Values

	gov:
AdministeredEntity
	Super Class
	A kind of "Administered Entity"
	-
	-

	c3i:
communicates
	Association
	
	0..n
	c3i:
InformationType

	c3i:
hasDataExchangeCapability
	Association
	
	0..n
	c3i:
DataExchangeCapability

	c3i:
isLinkConfigurationFor
	Association
	
	0..n
	c3i:
DataExchangeCapability

	cxda:
receivingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that receives a data exchange. Receiving Party is synonymous with 'Consumer'.
	0..n
	cx:
System

	cxda:
sendingParty
	Association
	A reference to an 'operational node' (DoDAF terminology) that sends a data exchange. Sending Party is synonymous with 'Producer'.
	0..n
	cx:
System

J2.39. Cx CUI First category field

The first category field of the CxCUI with the following values: 'Cx CUI-Text parameter', 'CxCUI Parameter Array', 'CxCUI Parameter Group', 'CxCUI-Boolean', 'CxCUI-Command', 'CxCUI-Enumerated parameter', 'CxCUI-Floating point parameter', 'CxCUI-Hexadecimal parameter', 'CxCUI-Integer parameter', and 'CxCUI-Time parameter'.

Cx CUI First category field

	c3i:
CxCUI-FirstCategoryField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-CategoryField
	Super Class
	A kind of "CxCUI Parameter category field"
	-
	-

	data:
field-position
	Attribute
	
	-
	-

	data:
length
	Attribute
	The length of a structure, for example the size of a vector
	-
	-

J2.40. Cx CUI Index field

A number between 000 and 999 that is used to identify the unique sensor, measurement, and/or reading, etc.

Cx CUI Index field

	c3i:
CxCUI-IndexField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-Field
	Super Class
	A kind of "CxCUI-Field"
	-
	-

J2.41. Cx CUI-Command category field

A category, encoded as a single letter, that distinguishes command types.

Cx CUI-Command category field

	c3i:
CxCUI-CommandCategoryField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-SecondCategoryField
	Super Class
	A kind of "CxCUI - second category field"
	-
	-

J2.42. Cx CUI-Group category field

A category, encoded as a single letter, that distinguishes grouping types.

Cx CUI-Group category field

	c3i:
CxCUI-GroupCategoryField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-SecondCategoryField
	Super Class
	A kind of "CxCUI - second category field"
	-
	-

J2.43. CxCUI - second category field

The second categorization of the CxCUI that is used to distinguish either commands, groups or units. The class has three subclasses accordingly.

CxCUI - second category field

	c3i:
CxCUI-SecondCategoryField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-CategoryField
	Super Class
	A kind of "CxCUI Parameter category field"
	-
	-

	data:
field-position
	Attribute
	
	-
	-

	data:
length
	Attribute
	The length of a structure, for example the size of a vector
	-
	-

J2.44. CxCUI -Unit Logical Field

A 'CxCUI Unit field' with the following instance(s): 'Logical Unit BU', 'Logical Unit MA', 'Logical Unit OP', 'Logical Unit PR', 'Logical Unit RD', 'Logical Unit SC', 'Logical Unit SL'.

CxCUI -Unit Logical Field

	c3i:
CxCUI-UnitLogicalField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-UnitField
	Super Class
	A kind of "CxCUI Unit field"
	-
	-

J2.45. CxCUI -Unit Physical Field

The Unit Field of the CxCUI is also used to represent physical occurrences of a system and/or subsystem.

CxCUI -Unit Physical Field

	c3i:
CxCUI-UnitPhysicalField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-UnitField
	Super Class
	A kind of "CxCUI Unit field"
	-
	-

J2.46. CxCUI -Unit Type Field

Encodes the type of a component or device. For example valves.

CxCUI -Unit Type Field

	c3i:
CxCUI-UnitTypeField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-UnitField
	Super Class
	A kind of "CxCUI Unit field"
	-
	-

J2.47. CxCUI Component field

The component field denotes a piece of a subsystem that is not decomposed further and that performs a very specific function. When used for software it is the Computer Software Component (CSC) within the CSCI or the application. For example: Camera, Smoke Detector, Umbilical System First Stage Joint Heater, and Alignment Laser.

CxCUI Component field

	c3i:
CxCUI-ComponentField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-Field
	Super Class
	A kind of "CxCUI-Field"
	-
	-

	c3i:
encodes
	Association
	
	0..n
	system:
Device or system:Component

	data:
field-position
	Attribute
	
	-
	-

	data:
length
	Attribute
	The length of a structure, for example the size of a vector
	-
	-

J2.48. CxCUI Constellation System field

The two characters of the 'Constellation System Field' identify the major Space Vehicles and Ground Operations segments that the parameter originates from and/or is related to. The first character identifies the vehicle, Control Center or Ground Station. The second character identifies a major section of the vehicle or futher specifies types of Ground Operation. For example: AU = Ares Upper Stage, PS=Payload Systems. There may be some cases where the second character is simply for clarification because there is not a sub-vehicle. For example EVA = EV.

CxCUI Constellation System field

	c3i:
CxCUI-CxSystemField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-Field
	Super Class
	A kind of "CxCUI-Field"
	-
	-

	c3i:
encodes
	Association
	
	0..n
	system:
SpaceVehicleSystem

	data:
encodedValue
	Attribute
	
	0..n
	cxda:
string2

	data:
field-position
	Attribute
	
	-
	-

J2.49. CxCUI Parameter category field

Is not a unique part of the CxCUI (i.e. the parameter can be uniquely identified by the first 14 characters; the last two characters simply provide additional information for the end user.) The first character within the Parameter Type identifiers the Data Type (Float, Boolean, etc). The second character within the Parameter Type designates the category of units that the parameter represents (temperature, pressure, velocity, etc) or clarifies what type of command or group parameter is being represented (modifiable command, command response, container, etc.)

CxCUI Parameter category field

	c3i:
CxCUI-CategoryField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-Field
	Super Class
	A kind of "CxCUI-Field"
	-
	-

J2.50. CxCUI Subsystem field

The two characters of the 'CxCUI Subsystem field' designate a system within a system. This may be a single component or (more likely) a group of components whose functions are very closely linked. A subsystem may also be software, at the Computer Software Configuration Item (CSCI) level. For example: Primary Flight Control computer, Video, Fire Detection & Suppression.

CxCUI Subsystem field

	c3i:
CxCUI-SubsystemField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-Field
	Super Class
	A kind of "CxCUI-Field"
	-
	-

	data:
encodedValue
	Attribute
	
	0..n
	cxda:
string2

	data:
field-position
	Attribute
	
	-
	-

J2.51. CxCUI System field

The two characters of the 'CxCUI System Field' designate a major functional system of subsystems, components and devices that work together to perform some function or group of related functions. For example: Electrical Power, Guidance & Control, Propulsion, Environment Control and Life Support.

CxCUI System field

	c3i:
CxCUI-SystemField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-Field
	Super Class
	A kind of "CxCUI-Field"
	-
	-

	c3i:
encodes
	Association
	
	0..n
	system:
SpaceVehicleFunctionType

	data:
encodedValue
	Attribute
	
	0..n
	cxda:
string2

	data:
field-position
	Attribute
	
	-
	-

	data:
length
	Attribute
	The length of a structure, for example the size of a vector
	-
	-

J2.52. CxCUI Unit field

This field may be associated with either the Subsystem or the Component field to help qualify it or futher describe it. It can be a numerical field than can be used to identify multiple pieces of the subsystem/component that are basically identical. Or it can be used to help identify primary or backup logical devices. Or it can be used as a type to add descriptive information to the component e.g. O2 TNK for Oxygen Tank.

CxCUI Unit field

	c3i:
CxCUI-UnitField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-Field
	Super Class
	A kind of "CxCUI-Field"
	-
	-

	data:
encodedValue
	Attribute
	
	0..n
	cxda:
string2

	data:
field-position
	Attribute
	
	-
	-

J2.53. CxCUI-Field

The CxCUI is made up of a number of fields. This class is an abstract superclass for these fields.

CxCUI-Field

	c3i:
CxCUI-Field
	Type
	Description
	#
	Permissible
Values

	c3i:
encodes
	Association
	
	1
	-

	data:
encodedValue
	Attribute
	
	1
	-

	data:
field-position
	Attribute
	
	1
	xsd:
nonNegativeInteger

	data:
length
	Attribute
	The length of a structure, for example the size of a vector
	1
	xsd:
nonNegativeInteger

J2.54. CxCUI-Structure

The CxCUI Structure describes the make up of the CxCUI

CxCUI-Structure

	c3i:
CxCUI-Structure
	Type
	Description
	#
	Permissible
Values
	Field
Pos.

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-
	-

	c3i:
hasCUI-CxSystem
	Association
	
	1
	c3i:
CxCUI-SystemField
	2

	c3i:
hasCUI-System
	Association
	
	1
	c3i:
CxCUI-SystemField
	2

	c3i:
hasCUI-Subsystem
	Association
	
	1
	c3i:
CxCUI-SubsystemField
	3

	c3i:
hasCUI-Unit
	Association
	
	1
	c3i:
CxCUI-UnitField
	4

	c3i:
hasCUI-Component
	Association
	
	1
	c3i:
CxCUI-ComponentField
	5

	c3i:
hasCUI-FirstCategory
	Association
	
	1
	c3i:
CxCUI-FirstCategoryField
	7

	c3i:
hasCUI-SecondCategory
	Association
	
	1
	c3i:
CxCUI-SecondCategoryField
	8

	c3i:
sensorEffectorOccurrence
	Attribute
	
	1
	xsd:
positiveInteger
	-

J2.55. CxCUI-Unit category

A category, encoded as a single letter, for distinguishing unit categories.

CxCUI-Unit category

	c3i:
CxCUI-UnitCategoryField
	Type
	Description
	#
	Permissible
Values

	c3i:
CxCUI-SecondCategoryField
	Super Class
	A kind of "CxCUI - second category field"
	-
	-

J2.56. DEM

A DEM is another term for 'Data Exchange Message', refer to 'c3i:DataExchangeMessage'.

J2.57. DEM Command format

A 'Data Exchange Message'.

DEM Command format

	c3i:
DEM-CommandFormat
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMessage
	Super Class
	A kind of "Data Exchange Message"
	-
	-

	c3i:
hasPacketPosition
	Association
	
	0..n
	c3i:
DEM-CommandStructureAssignment

J2.58. DEM Command structure assignment

The DEM Command Packing Structure defines the position in a command packet where a given command has been assigned.

DEM Command structure assignment

	c3i:
DEM-CommandStructureAssignment
	Type
	Description
	#
	Permissible
Values

	c3i:
DEM-StructureAssignment
	Super Class
	A kind of "DEM Structure Assignment"
	-
	-

	c3i:
packetPositionFor
	Association
	
	0..n
	system:
TelecommandedProperty

J2.59. DEM Content

Content is a variable size field of bytes containing user defined message data. It is aligned on even byte boundaries and may be optionally encrypted.

DEM Content

	c3i:
DEM-Content
	Type
	Description
	#
	Permissible
Values

	c3i:
DEM-Field
	Super Class
	A kind of "DEM-Field"
	-
	-

	c3i:
dem-dataByte
	Attribute
	
	0..n
	xsd:
byte

J2.60. DEM NonEncrypted data

Non-encrypted data is indicated by the security association that is referenced by the SecRef field if the Sec flag is set to 0. The structure of this field may be defined by message metadata that corresponds to the Topic.

DEM NonEncrypted data

	c3i:
DEM-NonEncryptedData
	Type
	Description
	#
	Permissible
Values

	c3i:
DEM-Content
	Super Class
	A kind of "DEM Content"
	-
	-

	c3i:
dem-securityOptionsFlag
	Attribute
	Sec is a flag that indicates application of security options to the message. Security options include encryption of the Data field and/or application of a Message Authentication Code to the header and Data fields. If set to 0, the Data field is not encrypted and neither the SecRef nor Message Authentication Code fields exist. If set to 1, security options have been applied as specified by SecRef field, and the optional SecRef field does exist. Security parameters, such as application of a Message Authentication Code, cryptographic keys, lengths, and algorithms are distributed separately. The default value is 0.
	-
	-

J2.61. DEM Structure Assignment

DEM Structure Assignment

	c3i:
DEM-StructureAssignment
	Type
	Description
	#
	Permissible
Values

	c3i:
packetPositionFor
	Association
	
	1
	system:
Parameter

	c3i:
startBit
	Attribute
	The bit within the command structure where the parameter begins. The first bit of the command structure is designated as bit 0.
	1
	-

J2.62. DEM System code

System is an unsigned integer that represents a specific Constellation System or an Element of a specific System, to which this DEM pertains; it need not identify either the source or destination of the message. Values of 0 and 2047 are reserved. All other values may be assigned by a Constellation registry. Choices regarding allocation of ranges in this field are Program and System specific.

DEM System code

	c3i:
DEM-SystemCode
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-11

J2.63. DEM Telemetry Structure Assignment

The DEM Telemetry Packing Structure defines the position in a telemetry packet where a given telemetered parameter has been assigned.

DEM Telemetry Structure Assignment

	c3i:
DEM-TelemetryStructureAssignment
	Type
	Description
	#
	Permissible
Values

	c3i:
DEM-StructureAssignment
	Super Class
	A kind of "DEM Structure Assignment"
	-
	-

	c3i:
packetPositionFor
	Association
	
	0..n
	system:
TelemeteredProperty

J2.64. DEM Telemetry parameter group structure type

A 'Data Exchange Message'.

DEM Telemetry parameter group structure type

	c3i:
DEM-TelemetryParameterGroupStructure
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMessage
	Super Class
	A kind of "Data Exchange Message"
	-
	-

	c3i:
hasParameterSpecification
	Association
	
	0..n
	c3i:
ParameterSamplingSpecification

J2.65. DEM Transport priority request type

A 'Bit Field Type' and 'Tagged enumeration literal' with the following instance(s): 'Express priority', 'High priority', 'Low priority' and 'Normal priority'.

DEM Transport priority request type

	c3i:
DEM-TransportPriorityRequestType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-2

J2.66. DEM Transport reliability request type

The transport reliability request encoded either a 0 for best effort, or a 1 for reliable transport. Transport reliability details depend upon the underlying network transport protocol and its configuration. The default value is 0.

DEM Transport reliability request type

	c3i:
DEM-TransportReliabilityRequestType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-1

J2.67. DEM frag field

Frag is a collection of fields that contain mechanism data unit fragmentation information. Frag fields are optional and only exist if the Frag flag is set to 1.

DEM frag field

	c3i:
DEM-FragField
	Type
	Description
	#
	Permissible
Values
	Field
Pos.

	c3i:
DEM-Field
	Super Class
	A kind of "DEM-Field"
	-
	-
	-

	c3i:
dem-FragmentNumber
	Attribute
	FragmentNumber is an unsigned integer that represents the relative location of the DEM’s mechanism data (user defined message data) within some original mechanism data unit that has been fragmented across multiple DEMs. Values of 0 and 255 are reserved. Each fragment may be of any size that does not cause violation of the DEM Size limit.
	1
	data:
bitfield-8
	1

	c3i:
dem-fragments
	Attribute
	Fragments is an unsigned integer that represents the total number of fragments into which the original mechanism data unit was divided. Values of 0 and 255 are reserved. All fragments of a fragmented mechanism data unit are associated for reassembly by common values for the Topic, Time, and Source fields in the DEM that carries each fragment.
	1
	data:
bitfield-8
	1

J2.68. DEM-Content map

The Content Map of the DEM starts with a byte field for the MAP size followed by a map of up to 255 bytes.

DEM-Content map

	c3i:
DEM-ContentMap
	Type
	Description
	#
	Permissible
Values
	Field
Pos.
	Bitfield
Pos.

	c3i:
DEM-Field
	Super Class
	A kind of "DEM-Field"
	-
	-
	-
	-

	c3i:
dem-ContentMapSize
	Attribute
	Up to 255 bytes of a content map that relates content in the DEM to parameters or commands and their arguments.
	1
	xsd:
byte
	1
	1

	c3i:
dem-ContentMapByte
	Attribute
	
	0..255
	xsd:
byte
	1
	2

J2.69. DEM-Data field

Command and Data values that make up the DEM Data

DEM-Data field

	c3i:
CommandAndParameterData
	Type
	Description
	#
	Permissible
Values

	nasa:
IdentifiableConcept
	Super Class
	A kind of "Identifiable Concept"
	-
	-

J2.70. DEM-Encrypted data

Encrypted data is indicated by the security association that is referenced by the SecRef field if the Sec flag is set to 1. The structure of this field may be defined by message metadata that corresponds to the Topic.

DEM-Encrypted data

	c3i:
DEM-EncryptedData
	Type
	Description
	#
	Permissible
Values

	c3i:
DEM-Content
	Super Class
	A kind of "DEM Content"
	-
	-

	c3i:
dem-securityOptionsFlag
	Attribute
	Sec is a flag that indicates application of security options to the message. Security options include encryption of the Data field and/or application of a Message Authentication Code to the header and Data fields. If set to 0, the Data field is not encrypted and neither the SecRef nor Message Authentication Code fields exist. If set to 1, security options have been applied as specified by SecRef field, and the optional SecRef field does exist. Security parameters, such as application of a Message Authentication Code, cryptographic keys, lengths, and algorithms are distributed separately. The default value is 0.
	-
	-

J2.71. DEM-Field

J2.72. DEM-Flags

Flags is a collection of fields that contain information useful in transporting and processing a message.

DEM-Flags

	c3i:
DEM-Flags
	Type
	Description
	#
	Permissible
Values
	Field
Pos.
	Bitfield
Pos.

	c3i:
DEM-Field
	Super Class
	A kind of "DEM-Field"
	-
	-
	-
	-

	c3i:
hasDEM-Version
	Property
	Version is the Data Exchange Message format version number. For the current C3I specifications, all bits are set to 0.
	1
	data:
bitfield-3
	1
	1

	c3i:
dem-SequenceCounter
	Attribute
	Sequence Counter is an optional seven-bit sequence counter. A value of 0 denotes the absence of a sequence count.
	1
	data:
bitfield-7
	1
	2

	c3i:
hasDEM-OriginCode
	Association
	OriginCode is an unsigned integer that indicates the type of origin for the message data. 0=live, 1=replay, 2=test, 3=simulation, 4-7=reserved. The default value is 0.
	1
	c3i:
DEM-OriginCode
	1
	3

	c3i:
hasDEM-OperationCode
	Association
	OperationCode is an unsigned integer that indicates the operational intent for the message data. 0=message request, 1=message, 2=message with echo request, 3=message echo, 4=metadata request, 5=metadata report, 6-7=reserved.
	1
	c3i:
DEM-OperationCode
	1
	4

	c3i:
hasDEM-Flag
	Property
	Flags is a collection of fields that contain information useful in transporting and processing a message.
	4
	-
	-
	-

J2.73. DEM-FragmentFlag

DataExchangeMessageFragmentFlag (Frag) is a flag that indicates whether or not the mechanism data (user-defined message data) contained in the DEM is a fragment of some larger mechanism data unit that has been divided into multiple data blocks, each of which is being transmitted in a separate DEM. As such, the flag indicates the presence of Block fields. If set to 0, the Block fields do not exist and the Data field contains a complete mechanism data unit. If set to 1, the original mechanism data unit has been fragmented and spread across multiple DEMs and the Block fields are provided as a standard means of conveying information that will be needed in order to reassemble the original mechanism data unit.

DEM-FragmentFlag

	c3i:
DEM-FragmentFlag
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-1

J2.74. DEM-Message type code

The DEM Type ID is an unsigned integer that represents specific message type. 0=reserved, 1=command, 2=telemetry, 3-31=reserved.

DEM-Message type code

	c3i:
DEM-MessageTypeCode
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-5

J2.75. DEM-Operation code

OperationCode is an unsigned integer that indicates the operational intent for the message data. 0=message request, 1=message, 2=message with echo request, 3=message echo, 4=metadata request, 5=metadata report, 6-7=reserved.

DEM-Operation code

	c3i:
DEM-OperationCode
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-3

J2.76. DEM-Origin code

OriginCode is an unsigned integer that indicates the type of origin for the message data. 0=live, 1=replay, 2=test, 3=simulation, 4-7=reserved. The default value is 0.

DEM-Origin code

	c3i:
DEM-OriginCode
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-3

J2.77. DEM-Time

Time is a collection of fields that contain time and timestamp related information.

DEM-Time

	c3i:
DEM-Time
	Type
	Description
	#
	Permissible
Values
	Field
Pos.
	Bitfield
Pos.

	c3i:
DEM-Field
	Super Class
	A kind of "DEM-Field"
	-
	-
	-
	-

	c3i:
dem-seconds
	Attribute
	Seconds is an unsigned integer representing seconds from Epoch time. The specific meaning usually depends on the Type of message and the OperationCode.
	1
	xsd:
unsignedInt
	1
	-

	c3i:
dem-milliseconds
	Attribute
	Milliseconds is an unsigned 10-bit integer representing milliseconds from the time specified by Seconds with a resolution of one millisecond.
	1
	data:
bitfield-10
	2
	1

	c3i:
dem-microseconds
	Attribute
	Milliseconds is an unsigned 6-bit integer representing milliseconds from the time specifed by Seconds.
	1
	data:
bitfield-6
	-
	-

J2.78. DEM-Time field Epoch code

Epoch is the epoch for the time specified by Seconds. 0=Jan 1,1970 @ midnight, 1= Jan 1, 2000 @ midnight, 2-3=reserved.

DEM-Time field Epoch code

	c3i:
DEM-TimeFieldEpochCode
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-2

J2.79. DEM-Time field scale code

Scale is the time scale for the time specified by Seconds. 0=UTC, 1=TAI, 2-3=reserved

DEM-Time field scale code

	c3i:
DEM-TimeFieldScaleCode
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	data:
BitFieldType
	Super Class
	A kind of "Bit Field Type"
	-
	-

	data:
encodedValue
	Attribute
	
	1
	data:
bitfield-2

J2.80. DEM-Topic

Topic is a collection of fields – System, Type, and Instance – that contain message type and identification information. The topic of the DEM identifies the type of command or telemetry parameter group to which the DEM pertains.

DEM-Topic

	c3i:
DEM-Topic
	Type
	Description
	#
	Permissible
Values
	Field
Pos.
	Bitfield
Pos.

	c3i:
DEM-Field
	Super Class
	A kind of "DEM-Field"
	-
	-
	-
	-

	c3i:
dem-systemID
	Attribute
	System ID is an unsigned integer that represents a specific Constellation System or an Element of a specific System, to which this DEM pertains; it need not identify either the source or destination of the message. Values of 0 and 2047 are reserved. All other values may be assigned by a Constellation registry. Choices regarding allocation of ranges in this field are Program and System specific.
	1
	c3i:
DEM-SystemCode
	1
	1

	c3i:
hasDEM-TopicTypeID
	Property
	Topic type is an unsigned integer that represents specific message type. 0=reserved, 1=command, 2=telemetry, 3-31=reserved.
	1
	c3i:
DEM-MessageTypeCode
	1
	2

	c3i:
dem-contentID
	Attribute
	Content ID is an unsigned integer representing an identifier for the message relative to the System and Type. Values of 0 and 65535 are reserved. All other values may be assigned by a Constellation registry. Choices regarding allocation of ranges in this field are Program and System specific.
	1
	xsd:
unsignedInt
	2
	-

J2.81. Data Exchange Message

The Data Exchange Message (DEM) is the basic data structure used by all mechanisms in this specification. Its fields support a point-to-point or publish/subscribe distribution pattern, topic based routing, information discovery, time, transport reliability and priority requests, and information security. The DEM may be exchanged through many forms of transport. Typical examples include UDP, TCP, serial link, message oriented middleware, file transfer, and even email. One or more DEMs may be carried within a single transport unit.
Transporting multiple DEMs in a single transport unit serves to reduce the effective transport overhead. In addition, DEM overhead may be reduced by (a) defining an increased data field within a DEM and/or (b) opting not to use optional fields. All of these techniques can be particularly effective when working with high rate data streams as well as bandwidth constrained links.
Data integrity may be provided by communication links, network transports, or the DEM. Links often use forward error correction or other forms of frame check sequence. Network transports often use checksums or cyclic redundancy checks. The DEM provides an optional message authentication code, which can confirm both integrity and authenticity.
A single DEM can convey only a limited amount of telemetry, command or other data (user-defined message data). When the size of a given unit of mechanism data – identified by a given Topic, Time, and Source – exceeds this limit, the mechanism may fragment that mechanism data unit into multiple data blocks and transmit each block as the mechanism data of a separate DEM. The Data Exchange Protocol supports this functionality by optionally carrying an identifying block number in each DEM, along with the total number of blocks into which the original mechanism data unit was divided. This information enables the original mechanism data unit to be reassembled from all received DEMs that have the same Topic, Time, and Source.
The values of DEM fields are chosen at the discretion of the Constellation System that is issuing the DEM, except as noted in the Requirements.

Data Exchange Message

	c3i:
DataExchangeMessage
	Type
	Description
	#
	Permissible
Values
	Field
Pos.

	c3i:
dem-size
	Attribute
	Size is the total number of bytes in the Data Exchange Message. This includes all header fields and the Content field. The minimum size is 16 bytes, and the maximum size is 65,000 bytes. The maximum size supports transport in a UDP packet. Note that Size must be a non-negative integer but need not be a multiple of 2.
	1
	xsd:
positiveInteger
	1

	c3i:
hasDEM-Flags
	Association
	Flags is a collection of fields that contain information useful in transporting and processing a message.
	1
	c3i:
DEM-Flags
	2

	c3i:
hasDEM-Topic
	Association
	Topic is a collection of fields – System, Type, and Instance – that contain message type and identification information. The topic of the DEM identifies the type of command or telemetry parameter group to which the DEM pertains.
	1
	c3i:
DEM-Topic
	3

	c3i:
hasDEM-Time
	Association
	Time is a collection of fields that contain time and timestamp related information. The 'seconds' field is an unsigned integer representing seconds from Epoch time. The specific meaning usually depends on the Type of message and the OperationCode. Milliseconds is an unsigned integer representing milliseconds from the time specifed by Seconds. Scale is the time scale for the time specified by Seconds. 0=UTC, 1=TAI, 2-3=reserved. Epoch is the epoch for the time specified by Seconds. 0=Jan 1,1970 @ midnight, 1= Jan 1, 2000 @ midnight, 2-3=reserved. Reserved is a set of bits that are reserved for future use.
	1
	c3i:
DEM-Time
	4

	c3i:
dem-source
	Attribute
	Source is an unsigned integer representing the creator of the message. It can be used to indicate a specific Constellation System or application within a System. Values of 0 and 65535 are reserved. All other values may be assigned by a Constellation registry.
	1
	xsd:
unsignedInt
	5

	c3i:
hasDEM-ContentMap
	Property
	
	1
	-
	6

	c3i:
hasDEM-Content
	Association
	Content is a variable size field of bytes containing user defined message data. It is aligned on even byte boundaries and may be optionally encrypted as indicated by the security association that is referenced by the SecRef field in the event that the Sec flag is set to 1. The structure of this field may be defined by message metadata that corresponds to the Topic.
	1
	c3i:
DEM-Content
	10

J2.82. Data exchange action type

A specification of the type of action associated with sending or receiving either telemetry data, telemetry metadata or commands or command metadata

Data exchange action type

	c3i:
DataExchangeActionType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	nasa:
Category
	Super Class
	A kind of "Category"
	-
	-

	c3i:
operationCode
	Association
	
	1
	xsd:
nonNegativeInteger

J2.83. Data exchange capability

A 'Administered Entity' and 'Capability'.

Data exchange capability

	c3i:
DataExchangeCapability
	Type
	Description
	#
	Permissible
Values

	c3i:
Capability
	Super Class
	A kind of "Capability"
	-
	-

	gov:
AdministeredEntity
	Super Class
	A kind of "Administered Entity"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
InformationExchangeType

	c3i:
hasLinkConfiguration
	Association
	
	1
	c3i:
CommunicationExchangeLink

	c3i:
occursInMissionPhase
	Association
	
	0..n
	mission:
MissionPhase

	nasa:
occursIn
	Association
	
	0..n
	mission:
MissionPhase

	system:
hasParameter
	Association
	
	0..n
	c3i:
Parameter

J2.84. Data exchange mechanism

A C3I Protocol for Date Exchange Message Sending and Receiving

Data exchange mechanism

	c3i:
DataExchangeMechanism
	Type
	Description
	#
	Permissible
Values

	comms:
Protocol
	Super Class
	A kind of "Protocol"
	-
	-

J2.85. Data exchange message type

A 'Tagged enumeration literal'.

Data exchange message type

	c3i:
DataExchangeMessageType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.86. Data exchange time

A 'Parameter'.

Data exchange time

	c3i:
DataExchangeTime
	Type
	Description
	#
	Permissible
Values

	c3i:
Parameter
	Super Class
	A kind of "Parameter"
	-
	-

	data:
hasDataType
	Association
	A reference to the specification of the data type of a variable or constant.
	0..n
	data:
Time

J2.87. Data exchange trigger type

A 'Event type' with the following instance(s): 'Arrival of telemetry', 'Arrival of telemetry metadata' and 'Operational decision'.

Data exchange trigger type

	c3i:
DataExchangeTriggerType
	Type
	Description
	#
	Permissible
Values

	c3i:
EventType
	Super Class
	A kind of "Event type"
	-
	-

J2.88. Data rate

Peak App payload + Overhead

Data rate

	c3i:
DataRate
	Type
	Description
	#
	Permissible
Values

	c3i:
DataRateParameter
	Super Class
	A kind of "Data rate parameter"
	-
	-

J2.89. Data rate parameter

A 'Parameter' with the following instance(s): 'Overhead bit rate'.

Data rate parameter

	c3i:
DataRateParameter
	Type
	Description
	#
	Permissible
Values

	c3i:
Parameter
	Super Class
	A kind of "Parameter"
	-
	-

J2.90. Distress alerting beacon type

A 'Beacon'.

Distress alerting beacon type

	c3i:
DistressAlertingBeacon
	Type
	Description
	#
	Permissible
Values

	comms:
Beacon
	Super Class
	A kind of "Beacon"
	-
	-

J2.91. Dynamic list mechanism

This mechanism provides distribution of a list with items that may be transient. Distribution is secure, decentralized, and discoverable. Metadata is also distributed as needed and can include information such as a list description, type of list item, item descriptions or enumerations, etc.

Dynamic list mechanism

	c3i:
DynamicListMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

J2.92. Emergency locator transmitter type

A 'Tagged enumeration literal'.

Emergency locator transmitter type

	c3i:
EmergencyLocatorTransmitterType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.93. End item response telemetry type

A 'Tagged enumeration literal'.

End item response telemetry type

	c3i:
EndItemResponseTelemetryType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.94. End item telemetry verification status

A 'Status'.

End item telemetry verification status

	c3i:
EndItemTelemetryVerificationStatus
	Type
	Description
	#
	Permissible
Values

	c3i:
Status
	Super Class
	A kind of "Status"
	-
	-

J2.95. Event

A 'Event'.

Event

	c3i:
Event
	Type
	Description
	#
	Permissible
Values

	nasa:
Event
	Super Class
	A kind of "Event"
	-
	-

	nasa:
about
	Association
	
	0..n
	nasa:
IdentifiableConcept

J2.96. Event type

A 'Tagged enumeration literal'.

Event type

	c3i:
EventType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.97. Exchange action

Exchange action

	c3i:
ExchangeAction
	Type
	Description
	#
	Permissible
Values

	c3i:
hasActionCategory
	Association
	
	1
	c3i:
DataExchangeActionType

	c3i:
isTriggeredBy
	Association
	
	0..n
	c3i:
EventType

	nc:
dateCreated
	Attribute
	
	1
	xsd:
dateTime

	nc:
purpose
	Attribute
	
	1
	xsd:
string

J2.98. Expedited forwarding per hop behavior type

A 'Tagged enumeration literal'.

Expedited forwarding per hop behavior type

	c3i:
ExpeditedForwardingPerHopBehaviorType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.99. File exchange

A 'Data exchange capability'.

File exchange

	c3i:
FileExchange
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeCapability
	Super Class
	A kind of "Data exchange capability"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
FileExchangeType

J2.100. File exchange type

A 'Information exchange type'.

File exchange type

	c3i:
FileExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

J2.101. File mechanism

This mechanism provides decentralized file distribution based on subscription interest. Files of interest may be easily located and are distributed in a secure manner.

File mechanism

	c3i:
FileMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

J2.102. Forward link range channel pN-Code

A 'Tagged enumeration literal'.

Forward link range channel pN-Code

	c3i:
ForwardLinkRangeChannelPN-Code
	Type
	Description
	#
	Permissible
Values

	cxda:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.103. G.711-Literal

A 'Tagged enumeration literal'.

G.711-Literal

	comms:
G.711-Literal
	Type
	Description
	#
	Permissible
Values

	comms:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.104. Information exchange type

A 'Tagged enumeration literal'.

Information exchange type

	c3i:
InformationExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	c3i:
forExchangeOf
	Association
	
	1
	c3i:
InformationType

J2.105. Information type

A 'Tagged enumeration literal' with the following instance(s): 'C3I File transfer', 'C3I Meta data information', 'Development flight instrumentation telemetry', 'Engineering Telemetry', 'Engineering motion imagery', 'Engineering operational flight instrumentation telemetry', 'Motion imagery information', 'Navigation information', 'Network function information', 'Operational flight instrumentation telemetry', 'Real time critical', 'Telemetry information', 'Time information' and 'Voice information'.

Information type

	c3i:
InformationType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

	nasa:
hasSubCategory
	Association
	
	0..n
	c3i:
InformationType

J2.106. Managed entry type

A 'Tagged enumeration literal'.

Managed entry type

	c3i:
ManagedEntryType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.107. Managed parameter type

A 'Tagged enumeration literal'.

Managed parameter type

	c3i:
ManagedParameterType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.108. Management information base Type

A 'Tagged enumeration literal'.

Management information base Type

	c3i:
ManagementInformationBaseType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.109. Maneuver command type

A 'Tagged enumeration literal'.

Maneuver command type

	c3i:
ManeuverCommandType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.110. Message authentication code

Message Authentication Code is a keyed hash of the header and data fields. The algorithm and key used to generate the code is indicated in the security association that is referenced by the SecRef field. This is an optional field and only exists if the Sec flag is set to 1.

J2.111. Message exchange type

A 'Tagged enumeration literal'.

Message exchange type

	c3i:
MessageExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.112. Meta data exchange

A 'Data exchange capability'.

Meta data exchange

	c3i:
MetaDataExchange
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeCapability
	Super Class
	A kind of "Data exchange capability"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
MetaDataExchangeType

J2.113. Meta data exchange type

A 'Information exchange type'.

Meta data exchange type

	c3i:
MetaDataExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

J2.114. Motion imagery data exchange

A 'Data exchange capability'.

Motion imagery data exchange

	c3i:
MotionImageryDataExchange
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeCapability
	Super Class
	A kind of "Data exchange capability"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
MotionImageryExchangeType

J2.115. Motion imagery exchange type

A 'Information exchange type' with the following instance(s): 'Private video communication', 'Proximity video communication' and 'Public affairs office imagery'.

Motion imagery exchange type

	c3i:
MotionImageryExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

J2.116. Motion imagery mechanism

This mechanism provides converged distribution of audio and motion imagery streams. Distribution is secure, decentralized, and discoverable. Metadata is also distributed as needed and can include information such as codec type, required service quality, etc.

Motion imagery mechanism

	c3i:
MotionImageryMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

J2.117. Navigation data exchange

A 'Data exchange capability'.

Navigation data exchange

	c3i:
NavigationDataExchange
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeCapability
	Super Class
	A kind of "Data exchange capability"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
NavigationDataExchangeType

J2.118. Navigation data exchange type

A 'Information exchange type'.

Navigation data exchange type

	c3i:
NavigationDataExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

J2.119. Parameter

A 'Parameter' with the following instance(s): 'DB-Shortfall'.

Parameter

	c3i:
Parameter
	Type
	Description
	#
	Permissible
Values

	system:
Parameter
	Super Class
	A kind of "Parameter"
	-
	-

	system:
hasCalibrationType
	Association
	
	1
	-

J2.120. Parameter composition type

A 'Tagged enumeration literal'.

Parameter composition type

	c3i:
ParameterCompositionType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.121. Parameter sampling specification

Parameter sampling specification

	c3i:
ParameterSamplingSpecification
	Type
	Description
	#
	Permissible
Values

	c3i:
hasSamplingType
	Association
	
	1
	c3i:
SamplingType

	system:
hasParameter
	Association
	The term 'parameter', when used in this document, represents both the measurements of telemetry and the fields of commands.
	1
	c3i:
Parameter

J2.122. Parameter value pair

The name of the modifiable command parameter and the data value to be assigned to the associated command parameter for this command occurrence within the command sequence. If calibration is associated with the parameter, the given value must be the uncalibrated, engineering unit value. For non-calibrated parameters the encoded form of the provided value must be consistent with the Data Type and Parameter Length specified for the parameter.

Parameter value pair

	c3i:
ParameterValuePair
	Type
	Description
	#
	Permissible
Values
	Field
Pos.

	c3i:
CommandAndParameterData
	Super Class
	A kind of "DEM-Data field"
	-
	-
	-

	c3i:
parameterName
	Association
	The name of the parameter as specified in compliance with the CxDA NIR.
	1
	cx:
CxCUI
	1

	data:
hasParameter
	Association
	A reference to a parameter and its metadata
	0..n
	system:
TelecommandedProperty
	-

	data:
value
	Attribute
	the value of a variable or parameter according to its data type
	0..n
	xsd:
byte
	-

J2.123. Peak Application Payload Bit Rate

This quantity, expressed in bits-per-second, is the desired average number of bits transferred per second between two
applications, as measured across the interface between the application software/hardware and the service access points defined by the C3I protocol suite, e.g., DE, RTP, CFDP, etc. This data rate should be averaged over a time window just long enough to abstract out any stochastic and burst characteristics of the transmitting application, thus yielding a value representative of the long term capacity demand on the network without imply any delay-tolerance beyond the bare minimal queuing needed across application interface.

Peak Application Payload Bit Rate

	c3i:
PeakApplicationPayloadBitRate
	Type
	Description
	#
	Permissible
Values

	c3i:
Parameter
	Super Class
	A kind of "Parameter"
	-
	-

	data:
hasDataType
	Association
	A reference to the specification of the data type of a variable or constant.
	-
	-

	units:
hasUnits
	Association
	A reference to the unit of measure of a quantity (variable or constant) of interest.
	-
	-

J2.124. Profile

A 'Profile'.

Profile

	c3i:
Profile
	Type
	Description
	#
	Permissible
Values

	comms:
Profile
	Super Class
	A kind of "Profile"
	-
	-

J2.125. Radiometric range type

A 'Tagged enumeration literal'.

Radiometric range type

	c3i:
RadiometricRangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.126. Range safety command type

A 'Tagged enumeration literal'.

Range safety command type

	c3i:
RangeSafetyCommandType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.127. Recorded telemetry type

A 'Tagged enumeration literal'.

Recorded telemetry type

	c3i:
RecordedTelemetryType
	Type
	Description
	#
	Permissible
Values

	cxda:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.128. Sampling composition type

A 'Tagged enumeration literal'.

Sampling composition type

	c3i:
SamplingCompositionType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.129. Sampling type

A 'Tagged enumeration literal' with the following instance(s): 'Multiple sample type' and 'Single sample type'.

Sampling type

	c3i:
SamplingType
	Type
	Description
	#
	Permissible
Values

	c3i:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.130. Security key mechanism

This mechanism provides distribution of cryptographic key material. Distribution is secure, decentralized, and discoverable. Users are authenticated via certificates, and keys are released based on user and group access control to Data Exchange Message Topics. Key material secured during transmission with asymmetric encryption (per certificate data), and users may optionally be notified of key updates.

Security key mechanism

	c3i:
SecurityKeyMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

J2.131. Security policy mechanism

This mechanism provides distribution of security policy information. Distribution is secure, decentralized, and discoverable. Exchange partners use the Security Key Exchange Mechanism to authenticate and acquire private keys for use on dedicated Data Exchange Message Topics. Types of information exchanged include user profiles, group memberships, and Topic group access control lists. This information may be transported as metadata in the form of XML documents that conform to XML Schemas. Partners may optionally be notified of policy updates.

Security policy mechanism

	c3i:
SecurityPolicyMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

J2.132. Security policy type

A 'Tagged enumeration literal'.

Security policy type

	security:
SecurityPolicyType
	Type
	Description
	#
	Permissible
Values

	cxda:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged enumeration literal"
	-
	-

J2.133. Software event

A 'Event'.

Software event

	c3i:
SoftwareEvent
	Type
	Description
	#
	Permissible
Values

	c3i:
Event
	Super Class
	A kind of "Event"
	-
	-

J2.134. Status

A 'Status'.

Status

	c3i:
Status
	Type
	Description
	#
	Permissible
Values

	nasa:
Status
	Super Class
	A kind of "Status"
	-
	-

J2.135. Stream

Stream

	c3i:
Stream
	Type
	Description
	#
	Permissible
Values

	c3i:
originator
	Association
	The origininating system of a stream (for example).
	1
	cxda:
CxSystemType

J2.136. Stream parameter

A 'Parameter'.

Stream parameter

	c3i:
StreamParameter
	Type
	Description
	#
	Permissible
Values

	c3i:
Parameter
	Super Class
	A kind of "Parameter"
	-
	-

J2.137. Tagged enumeration (c3i)

A 'Tagged Enumeration' with the following instance(s): 'Command characteristic', 'Command data format type enumeration', 'Command data integrity check type enumeration', 'Command initiation response type enumeration', 'Command packing map type enumeration', 'Command request type enumeration', 'Command response type enumeration', 'Command script status type enumeration', 'Command status type enumeration', 'Command verification action type enumeration', 'DEM fragment flag enumeration', 'DEM time field scale enumeration', 'DEM-Message type code enumeration', 'DEM-Operation code enumeration', 'DEM-Origin code enumeration', 'DEM-Time field epoch code enumeration', 'Data exchange action type enumeration', 'Data exchange trigger type enumeration', 'File exchange type enumeration', 'Information type enumeration', 'Meta data exchange type enumeration', 'Motion imagery exchange type enumeration', 'Motion imagery type enumeration', 'Navigation data exchange type enumeration', 'Sample type enumeration', 'Telemetry exchange type enumeration', 'Telemetry type Enumeration', 'Time data exchange type enumeration', 'Transport priority request enumeration', 'Transport reliability request type enumeration', 'Voice data exchange type enumeration' and 'information exchange type enumeration'.

Tagged enumeration (c3i)

	c3i:
TaggedEnumeration
	Type
	Description
	#
	Permissible
Values

	data:
TaggedEnumeration
	Super Class
	A kind of "Tagged Enumeration"
	-
	-

	data:
hasLiteral
	Association
	
	0..n
	c3i:
TaggedEnumerationLiteral

	data:
defaultValue
	Attribute
	
	0..n
	c3i:
TaggedEnumerationLiteral

J2.138. Tagged enumeration literal

A 'Tagged Enumeration Literal'.

Tagged enumeration literal

	c3i:
TaggedEnumerationLiteral
	Type
	Description
	#
	Permissible
Values

	data:
TaggedEnumerationLiteral
	Super Class
	A kind of "Tagged Enumeration Literal"
	-
	-

J2.139. Telemetered system

A system that has telemetered parameters and commands

Telemetered system

	c3i:
TelemeteredSystem
	Type
	Description
	#
	Permissible
Values

	c3i:
System
	Super Class
	A kind of "Telemetered system"
	-
	-

J2.140. Telemetry client profile

A 'Profile'.

Telemetry client profile

	c3i:
TelemetryClientProfile
	Type
	Description
	#
	Permissible
Values

	c3i:
Profile
	Super Class
	A kind of "Profile"
	-
	-

J2.141. Telemetry data exchange

A 'Data exchange capability'.

Telemetry data exchange

	c3i:
TelemetryDataExchange
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeCapability
	Super Class
	A kind of "Data exchange capability"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
TelemetryExchangeType

J2.142. Telemetry exchange type

A 'Information exchange type' with the following instance(s): 'Health and status telemetry format literal'.

Telemetry exchange type

	c3i:
TelemetryExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

	c3i:
forExchangeOf
	Association
	
	-
	-

J2.143. Telemetry format

A 'Data Exchange Message'.

Telemetry format

	c3i:
DEM-TelemetryFormat
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMessage
	Super Class
	A kind of "Data Exchange Message"
	-
	-

	c3i:
hasPacketPosition
	Association
	
	0..n
	c3i:
DEM-TelemetryStructureAssignment

	c3i:
hasParameterSpecification
	Association
	
	0..n
	c3i:
ParameterSamplingSpecification

J2.144. Telemetry log

A 'Log'.

Telemetry log

	c3i:
TelemetryLog
	Type
	Description
	#
	Permissible
Values

	comms:
Log
	Super Class
	A kind of "Log"
	-
	-

J2.145. Telemetry mechanism

A 'Data exchange mechanism'.

Telemetry mechanism

	c3i:
TelemetryMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

J2.146. Telemetry parameter group data exchange action type

J2.147. Telemetry server profile

A 'Profile'.

Telemetry server profile

	c3i:
TelemetryServerProfile
	Type
	Description
	#
	Permissible
Values

	c3i:
Profile
	Super Class
	A kind of "Profile"
	-
	-

J2.148. Telemetry stream

A 'Stream'.

Telemetry stream

	c3i:
TelemetryStream
	Type
	Description
	#
	Permissible
Values

	c3i:
Stream
	Super Class
	A kind of "Stream"
	-
	-

	c3i:
dem-messageType
	Association
	The DEM Type ID is an unsigned integer that represents specific message type. 0=reserved, 1=command, 2=telemetry, 3-31=reserved.
	1
	c3i:
DEM-MessageTypeCode

J2.149. Time data exchange

A 'Data exchange capability'.

Time data exchange

	c3i:
TimeDataExchange
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeCapability
	Super Class
	A kind of "Data exchange capability"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
TimeDataExchangeType

J2.150. Time data exchange characteristic

A 'Information exchange type'.

Time data exchange characteristic

	c3i:
TimeDataExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

J2.151. Transmit Receive Turnaround Ratio

A 'Communication Parameter'.

Transmit Receive Turnaround Ratio

	property:
TransmitReceiveTurnaroundRatio
	Type
	Description
	#
	Permissible
Values

	property:
CommunicationParameter
	Super Class
	A kind of "Communication Parameter"
	-
	-

J2.152. Voice data exchange

A 'Data exchange capability'.

Voice data exchange

	c3i:
VoiceDataExchange
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeCapability
	Super Class
	A kind of "Data exchange capability"
	-
	-

	c3i:
hasDataExchangeCharacteristic
	Association
	
	0..n
	c3i:
VoiceDataExchangeType

J2.153. Voice data exchange type

A 'Information exchange type' with the following instance(s): 'AG1-Voice', 'AG2-Voice' and 'Contigency voice'.

Voice data exchange type

	c3i:
VoiceDataExchangeType
	Type
	Description
	#
	Permissible
Values

	c3i:
InformationExchangeType
	Super Class
	A kind of "Information exchange type"
	-
	-

J2.154. Voice mechanism

This mechanism provides distribution of voice streams. Distribution is secure, decentralized, and discoverable. Metadata is also distributed as needed and can include information such as codec type, required service quality, etc.

Voice mechanism

	c3i:
VoiceMechanism
	Type
	Description
	#
	Permissible
Values

	c3i:
DataExchangeMechanism
	Super Class
	A kind of "Data exchange mechanism"
	-
	-

Appendix K
Naming Guidance

K1.0
CXID NAMING GUIDANCE

K1.1
What is a CxID?

A CxID is a unique identifier for Constellation Program items, such as telecommand and control parameters. Items in the program will have a CxID generated by the Naming Registry, using rules outlined in CxP 70172-01 Data Architecture Naming and Identification Rules (NIR).

K1.2
How is a CxID related to a CxCUI?

The Constellation Compact Unique Identifier (CxCUI) is a fixed-length (compact) identifier used for telemetry/telecommand parameters and measurements. A CxCUI is derived either algorithmically or through mapping tables from the CxID. Due to fixed-length constraints of the CxCUI, some of the details of the CxID may need to be collapsed.

K1.3
How is a CxID constructed?

A CxID is constructed through a compositional hierarchy which reflects the context of a item, such as a command or parameter, so that it can be unambiguously identified. It is constructed recursively by taking the CxID of the hierarchical parent of the item and appending the Constellation Short Identifier (CxSID) of the item.

K1.4
What are the benefits of constructing a CxID in this method?

In addition to being a unique identifier, the hierarchical construction of CxIDs allows:

· A common prefix for a fixed context,

· A clear anchoring of names in a functional or typological hierarchy according to perspectives (such as vehicles/systems, operations, etc.)

· A flexible way tailor the use of identifiers to the situation of use,

· The option to ignore fine detail (“blackboxing”) or recursively refine references to desired level,

· Support for several dimensions (types, occurrences, instances, implementations, realizations), and

· A systematic (algorithmic when possible) mapping between reference CxID and local identifier practices.

K1.5
How is a CxSID constructed?

The CxSID is constructed using an abbreviated form of the Camel Case Common Name (CxCCCN) of an item. This abbreviated form is derived from the CxCCCN by explicit rules described in CxP 70172-01 Data Architecture Naming and Identification Rules (NIR).

e.g. CxSID ‘ADCS’ stands for ‘Attitude Determination & Control System’

When used as part of CxID, a CxSID often includes an occurrence number to designate a particular item when a vehicle has multiple instances for redundancy.

e.g. CxSID ‘ADCS_O’ refers to a unique occurrence of an ‘ADCS’

K1.6
What are some other CxSID examples?

· XoVLV (Crossover Valve)

· LH2-FlDnVLV (Liquid Hydrogen Fill & Drain Valve)

· PrgVLV (Purge Valve)

· RCS (Reaction Control System)

K1.7
Are there character constraints on CxSIDs?

CxSIDs can contain only the following characters:

· Upper Case Letters [A-Z]

· Lower Case Letters [a-z]

· Integers [0-9]

· Underscore character – ‘_’

· Hyphen – ‘-‘

K1.8
What is an example of a CxID?

· ORION_0/CM_0/ADCS_0 is constructed by adding the CxSID of the ‘Attitude Determination and Control System’ to its parent in the Product Breakdown Structure - ORION_0/CM_0 (Orion Control Module).

K1.9
What are the character constraints on CxIDs?

CxIDs may contain only the following characters:

· Any character permitted for CxSIDs

· Special characters: ’, ‘:’, “.’, ‘,’, ‘[‘, ‘]’,’{‘,’}’,’<’,’>’, ‘%’, ‘@’ that have a predefined meaning for constructing and interpreting CxIDs. See CxID Reserved Characters table.

· Other special characters, e.g., ‘-‘, are permitted as part of the Manufacturing Perspective provided that they do not overlap with the special characters above.

Table K1.9-1 CXID RESERVED CHARACTERS

	Prefix Character(s)
	Usage

	/
	Hierarchical delimiter, separating CxSIDs in a CxID

	-
	Hyphens are used to break up words in phrase structures that would otherwise have ambiguity and or be difficult to read and parse. For example, this often occurs when a chemical name, like ‘LH2’, is a prefix to a system, device or parameter. The hyphen is for syntactic convenience but in some cases can have semantic implications. For example, when a system or component is part of a name but must be clearly separated.

	//
	Switch of the perspective, separating different domains of naming

	%
	Prefix on a surrogate entity – backup, standby, or a simulation model

	@
	Prefix on an attribute

	.
	Prefix on an parameter, separating the entity whose parameter is being measured from the identifier for the parameter

	:
	Suffix on a perspective identifier, separating the perspective identifier from the hierarchical address, also a way to identify multiple parents that are from the different branches of the same perspective hierarchy

	,
	Delimiter in the list of entities

	_
	An underscore character, ‘_’, is a prefix denoting an occurrence

	[]
	Brackets are used to identify a set of entities that constitute a group, a configuration, an interface, a docking, a communications link or an assembly, as specified by a lower-case prefix qualifier, ‘grp, ‘cnfg, ‘intf, ‘dock’, ‘link and ‘asmb’, respectively

	()
	Used to denote one or more arguments on a functor. This commonly occurs for specifying indices but can be used for other functional names. Also, optionally, used in the manufacturing and technology perspectives to include a short commodity tile after the UNSPS code

	{}
	Used to denote a ‘slot filler’ – for example, to allocate a device with a specific technology to a functional role

	<>
	Used to denote a list of metadata needed to discriminate an identifier or for a name.

K1.10
Perspectives

K1.10.1
What is a Perspective?

Perspectives define context so that identifiers can have distinct designations across varying domains.

CONSTRUCTING HIERARCHICAL IDENTIFIERS (PERSPECTIVES)

This section provides guidance and examples for constructing hierarchical identifiers. As the activities and perspectives of Constellation participants are diverse we must distinguish several hierarchical domains (perspectives), characterized by the logical nature of the most important relations among items. For each of these domains, the requirements of naming will be different, inasmuch as they would reflect the major concerns of the domain. The sections that follow, list the currently supported perspectives.

Each perspective has one or more supported hierarchical decompositions. Each type of the hierarchical perspective has an assigned designation that identifies it.

K1.10.2
STRUCTURAL PERSPECTIVE (HIERARCHY)

The Structural Perspective considers an item according to its physical and mechanical breakdown structure. A Master Equipment List is a good example of this type of structural breakdown. An example of how to construct a vehicle CxSID from the Structural Perspective is represented in Figure 1.

 [image: image20.wmf]
FIGURE K1.10.2-1: STRUCTURAL PERSPECTIVE CXSID CONSTRUCTION

Example of a Structural Perspective Constellation Identifier (CxID):

ARES I, Upper Stage J-2X Engine, Flight Instrumentation Package, Fuel Turbopump, Pump Impeller#1

ARESI/US_0/J2X_0/FIP_0/FlTurbpmp/PumpImpl_1

or

//SP: ARESI/US_0/J2X_0/FIP_0/FlTurbpmp/PumpImpl_1

K1.10.3
AVIONICS PERSPECTIVE (HIERARCHY)

The Avionics Perspective is another physical-based hierarchy, but one which focuses on how a parameter is measured. For example, a parameter or command is accessed via an avionics computer, over a specific data bus, through a channel, multiplexer (mux), and port. This perspective is applicable to engineers concerned with the actual physical configuration as opposed to the Functional Perspective which is a more logical representation.

An example of how to construct a vehicle CxSID from the Structural Perspective is represented in Figure K1.10.3-1.

 [image: image21.png]Wb i o - i

FIGURE K1.10.3-1: AVIONICS PERSPECTIVE CXSID CONSTRUCTION

K1.10.4
FUNCTIONAL PERSPECTIVE (HIERARCHY)

The Functional perspective considers an item according to its (functional) role in a hierarchical assembling of components which make up recursively larger entities. his perspective is applicable to any and all items in the Constellations Program.

The functional perspective is best served by a composition hierarchy. In addition, some functional considerations attach to groups of items, or to the relationships of items belonging to different parts of the composition hierarchy.

In contrast to the Avionics Perspective which represents “how” a parameter is measured, the Functional Perspective represents “what” is being measured, the logical representation.

An example of constructing a vehicle CxSID from the Functional Perspective is represented in Figure K1.10.4-1.

[image: image22.png]

FIGURE K1.10.4-1: FUNCTIONAL PERSPECTIVE CXSID CONSTRUCTION

The specific hierarchy for the ARESI functional view is shown below in Figure K1.10.4-2:

Two Examples of Functional Perspective Constellation Identifiers (CxID):

ARESI, First Stage Main Propulsion System, LO2 Fuel System, LO2 Low Pressure Supply Valve#2:

ARESI/FS_0/MPS_0/LO2-FuSYS_0/LO2-LoPrsSupVLV_2

or

//FP:ARESI/FS_0/MPS_0/LO2-FuSYS_0/LO2-LoPrsSupVLV_2.

ARES I, First Stage, Flight Safety System, RF-Subsystem, Antenna #1:

ARESI/FS_0/FSS_0/RFSS_0/Antenna_1

or

//FP:ARESI/FS_0/FSS_0/RFSS_0/Antenna_1

Cross-functional Relations

An example of cross-functional relation is an item that is connected to two parts of the vehicle where each part belongs to a separate functional decomposition. In addition, support for subordinate categories (e.g., engineering drawings) require special add-ons, because some functional considerations attach to groups of items, or to the relationships of items belonging to different parts of the composition hierarchy.

One of the engineering activities is to specify and design the ways in which different parts or components interact at the same hierarchical level. For instance, the first and upper stage of Ares-I, as well as the CEV, must be secured together in specific ways, which provide for the initial configuration as well as for subsequent phases. To be able to continue using the identification scheme started with CSI, the documents relating to these concerns must be attached to some entity within the physical/functional hierarchy. Given that these concerns belong, not to one component, but to their interactions – or to some collection of components, it becomes necessary to extend to identification of components to functional groups.

The CSI notation already provides for lists, which can be used to factor together elements at any level of the hierarchy. The list notation [a, b, ...] can be reused for Engineering groupings.

These groups may be of a number of kinds:

a.
Functional Assemblies - There are recognized assemblies. Such groups are defined by considerations of manufacturing or similar concerns.

b.
Interfaces - An interface is not, strictly speaking, a group of components, rather what such components share in their functional definition. For purposes of reference only, one can assimilate the interface between components A and B to a group consisting of A and B. To specify interfaces, CxDA uses a distinct notation.

c.
Groupings – a set of constellation entities that share a common object such as an engineering drawing.

K1.10.5
OPERATIONAL PERSPECTIVE (HIERARCHY)

Another major perspective is that of Operations. Vehicles and other systems are deployed and interact according to certain processes (“missions”, including supporting “ground operations”).

Operations are typically described as processes engaging agents which are either systems or members of Enterprise entities (such as individuals, teams and organizations). Processes are best served by composition hierarchies, but several add-ons are required to deal with process interactions and agent roles within processes.

There are many situations where the scope exceeds a single vehicle. The two major cases are Mission definitions and Ground Operations. The Operation Perspective is process composition hierarchy. Let’s consider two situations.

Missions Deploy Vehicles

While the Functional Perspective can be used in the design and structure of vehicles, the Operational Perspective can be used to describe the vehicle(s) in the context of a mission and its definition. The processes involving vehicles can be defined as a cluster of individual processes attached each to one actor. The actor-specific processes (also known as “swim-lanes”, or “lines of visibility”) have well-defined points of interaction and for each of those an interface protocol is defined. The operation of this interface protocol is itself a defined process. This approach is illustrated in Figure K1.10.5-1: Mission Structure .

[image: image23.jpg]

Figure K1.10.5-1 Mission Structure

This analysis allows convenient, recursive naming.

Essentially, a Mission is seen as a composition of partial missions, each with an associated vehicle. Each component mission consists of a (mostly sequential) composition of actions for the associated vehicle. Most of these actions are performed by a single vehicle, but some actions require a specific interfacing between two (or more) vehicles. These should be referenced using the interface notation described above.

In many cases, such interface actions require further analysis into a process during which each vehicle or specific parts of them perform sub-actions – some of which are interface actions, so that the analysis may need to be applied recursively. This analysis need to be performed only to the depth required to ensure unique identification of relevant artifacts (e.g., specification of a docking maneuver).

Ground Operations Operate on Vehicles

Ground Operations operate on vehicles, using ground facilities, which can be described in a compositional-functional hierarchy similar to that used for vehicles. Ground operations can be described by processes in which vehicles are received, assembled, prepared and handed over to Mission operations. . .

It is, therefore, possible to describe ground operations a “swim-lane” approach similar to that used for Missions in the previous example.

Example of a drawing for a configuration of elements:

A drawing representing the configuration required for handling filling the Liquid Hydrogen Tank of the ARES-I vehicle (J 79K40024) can be referred to as

GS/LH2/GP[GSE/LH2,MLP/LH2,Ares-I/LH2].<spec. document designator>

K1.10.6
TECHNOLOGY PERSPECTIVE (HIERARCHY)

A functional item within a compositional or operational hierarchy can also be implemented using a variety of technical solutions. As a great deal of engineering design is devoted to this implementation relationship, a compositional approach will not meet all the needs of naming and identification.

Example:

The designation of a Solenoid Valve:

//TP:40141605:SlndVLV

The string after the ‘:’ is the CxSID for the Solenoid valve, this is optional.

CxDA uses The United Nations Standard Products and Services Code (UNSPSC), a standard for classification of products and services,as a basis for identifying areas within the technology domain. In order to effectively use UNSPSC, CxDA specifies modifications/extensions in order to address several issues. These issues and solutions are described below:

Readability Issue

The readability of the UNSPSC notation is affected by two opposite disadvantages.

a) The UNSPSC code uses a numeric notation which is opaque and must be supplemented by a lookup, making the use of the notation awkward and slow.

b) Each UNSPSC code has an associated “title”, which details the intended content of the associated category. Unfortunately the titles of upper categories tend to be long and verbose, unsuitable for inclusion in a hierarchical naming scheme.

Solution: Use a combination of the numeric code – which ensures uniqueness – with the Commodity title (i.e., the title field for the Commodity level only). The Commodity title is typically short, and tends to refer to entities that Constellation program participants are quite familiar with.

As an example, consider a small part of the UNSPSC hierarchy:

TABLE K1.10.6-1: UNSPSC VALVE EXAMPLES

	UNSPS Code
	Description

	40000000
	Distribution and Conditioning Systems and Equipment and Components

	40140000
	Fluid and gas distribution

	40141600
	Valves

	40141602
	Needle valves

	40141603
	Pneumatic valves

	40141604
	Safety valves

	40141605
	Solenoid valves

	40141606
	Relief valves

	40141607
	Ball valves

	40141608
	Hydraulic valves

	40141609
	Control valves

	40141610
	Float valves

	40141611
	Globe valves

	40141612
	Expansion valves

Coverage Issue

Two opposite coverage features of UNSPSC require some changes in order for it be usable for CxDA

a) The UNSPS notation is intended to cover any and all Products and Services which might be of interest to UN Programs. Accordingly, its coverage is vast.

b) On the other hand, the notation/classification’s initial purpose does not require that it should be extremely detailed.

Fortunately, the UNSPSC governance has provided procedures for additions and refinements.

Solution: Constellation Program should ignore irrelevant Segments and Families, and define, and possibly, register refinements of detail in those areas of interest to NASA.

Example of an attribute-based specialization of technology entities

The designation of a solenoid valve that is also 3-way and cryogenic is done as follows:

40141605<3Way, Cry >

Or to be more explicit:

40141605:SlndVLV<3Way,Cry>

40141605:SlndVLV<3Way,Crygnc>

40141605<3Way, Crygnc >

K1.10.7
MANUFACTURING PERSPECTIVE (HIERARCHY)

This perspective covers considerations relating to the realization of both functional composition and technological choices.

Manufacturers have schemes for identifying production schedules and parts (“part numbers”, “serial numbers”). These schemes are essential for the management of deliveries, storage and deployment of items, such as building a Bill of Materials (BOM). They are also not reducible to either compositional or operational concerns, though they must have definite interfaces with those.

Each manufacturer has some classification scheme for its models and products. To co-ordinate them, some typological scheme must be used to organize the manufacturing agents themselves. The Manufacture perspective is not subject to “composition”. Instead, two classification principles are supported.

Products and Services

The UNSPSC classification shall be applied to the Products and Services hierarchy, with the modifications identified in the Technology perspective section.

Example:

The designation of a specific product for a Solenoid Valve:

//MP/SP:INGERSOLL-RAND_CAT33P-120-A (NIR-7)

Suppliers

Each manufacturer has a scheme for tracking its products and services, which is adequate for unique identification with the context of the Supplier. Combining the supplier prefix with the supplier part number (e.g., CAGE code) provides a globally unique identifier for any item.

In addition, one can use a UNSPSC prefix to the Suppliers’ identifiers to enable:

· Grouping items by meaningful categories (which may not be apparent in the Suppliers’ identifiers. An interface between the Technology studies and the Procurement concerns. By using a double slash to indicate the perspective switch, one can link Technology with Manufacture considerations. When necessary, the item can be identified down to the individual part number/serial number, for the purposes of procurement, warehousing, maintenance, etc.

Example:

The designation of a specific product for a Solenoid Valve is made using a namespace switch:

TP:40141605:SlndVLV<NC,3Way>//SP:INGERSOLL-RAND_CAT33P-120-A

K1.10.8
CONTRACTUAL

All the activities of the Constellation Program take place in an economic/legal context, which must be taken into account, and therefore will interface/interact with them.

K1.10.9
RELATIONS ACROSS PERSPECTIVES

A CxID can identify both the actual physical objects and the roles they play, for example, as a part of the vehicle.

For example, A CxID constructed from the Functional perspective (a Product Breakdown structure) refers to the role in the vehicle that can, at different points in time, be played by more than one physical object. This role is often referred to as occurrence while the physical object is referred to as an instance.

If the current physical object is in any way defective, it will be replaced by another, and yet the designation “Oxygen Low Pressure Supply Valve” and the object’s place in the product breakdown structure will still apply. Physical things can be second sourced from another manufacturer, or even replaced by a different device type provided the functional (and spatial) specifications are met.

Conversely, in the Manufacture perspective, a CxID specifies the conditions under which the item was produced, but says nothing about the use to which it might be put. A CxID constructed to support the Manufacture perspective identifies a physical thing -- an instance.

These two examples clearly bring out the need for different perspectives, but also the need to manage the relationship between them.

When we use an identifier, we typically do so only from one of the possible perspectives, although, for commonplace items such as a valve or a battery, these several aspects are often confused or ‘mashed’ together.

Consider an example:

The function analysis of vehicle A has identified a subsystem S (e.g., an instrument package) and determined that a device for storing electrical energy (a “battery”) would be required in subsystem S.

So far, the word battery is used as an identifier of a function to be fulfilled in the composition of subsystem S (and transitively of vehicle A). What is being identified is a role or occurrence.

Eventually, this function will have to be fulfilled by some particular manufactured object. This object is also called a “battery”, but it is a different type of an object – it could be a physical thing or an instance and/or it could be a type or class of physical things. By class we mean a set of instances that share the same qualities, for the example, all NiCad batteries. They differ from the previously discussed “battery” in that the previous “battery” considered purely from the functional decomposition perspective did not weigh anything, did not cost anything and had no defined technology (e.g., NiCad or LiIon).

The decision as to which implementation will be selected for a function depends on many considerations, beyond the purely functional requirement definition.

Typically, the analysis of available physical devices will be carried out in a trade study separately from the functional composition of the vehicle, and the results of such a study will be reusable across several (many) functional design exercises. In fact, the study may offer wider technical answers, beyond strict “batteries” (in the technological sense), e.g., fuel cells or atomic power plants. Yet a purely functional approach could justifiably continue to call the functional slot a “battery”. (Some functionally more explicit designation might be appropriate, e.g., Electrical Power Supply, but the shorter vernacular tends to win out).

This example illustrates that:

a) Functional context cannot be used to name the entities referred to in the technology study, because the results of these studies do not depend on any particular function composite, and are intended for reuse in several functional contexts;

b) Even if it were possible to use the functional context (for a very narrow study aimed at a specific context of use) the considerations in the study are not those of the composition hierarchy. The “batteries” in the study are objects examined from the perspective of technology, and/or of manufacture, and/or of operations, etc.

We have also introduced a notion of types and contrasted types with instances and occurrences. Types can be thought as well-known classes or kinds of things that occur in space systems engineering and organizational domains or disciplines. At the highest level of the Constellation hierarchy, in the field of space systems, a type distinguishes a kind of vehicle, a kind of instrument or a type of ground support equipment. In the organizational domain, a type distinguishes a kind of organization, such as Safety and Mission Assurance.

A type can be further classified into sub-types, which are more specialized forms of the parent type. Such type hierarchies are common in space systems and they should not be confused with part or compositional hierarchy.

An instance is an actual realization of a type – something that has existence as opposed to being just a type classification. For example, in the same way there are multiple Space Shuttle Orbiters such as OV-101 and OV-105, there will also be multiple instances of Crew Exploration Vehicle (CEV).

K1.10.10
CONSTELLATION PROCESSES AND PERSPECTIVES

The processes within Constellation cut across Perspectives. It is important to take into account that the various processes within Constellation (e.g., engineering, deployment, operations and procurement) end up touching upon the concerns of multiple perspectives.

Constellation program naming scheme supports this “dynamic” aspect. In particular, there are contexts where the same physical or informational item must be designated by an identifier which relates to several domains at once. For example:

Having specified a functional location in purely compositional terms, the designer must make a choice as to the practical implementation of the function: i.e., find an implement for the function. This “function-implement” relationship represents a design choice in Engineering, bridging between the Function and Technology domains.

Later in the process, a specific realization of the technology solution will have to refer to Manufacture concerns, to declare the type (e.g., Part number) of device to use.

In Operations, the identification of the particular instance of the implement (e.g. Serial Number) for each occurrence of the function is essential.

In each case, these decisions typically need to be communicated widely within the program. Accordingly, the naming scheme must include a specification for the function-implement-realize relationship, bridging between the Composition, Technology, Manufacture and Operation perspectives.

Similar requirements arise from the need to bridge between these perspectives and the Contractual perspective.

K1.10.11
EXAMPLE OF IDENTIFIERS CONNECTING MULTIPLE PERSPECTIVES

This section provides an example of CxID syntax connecting the Functional perspective with the perspectives of engineering and operations.

 As engineering proceeds from general functional requirements to specifications to decisions on implementation, an item first receives a designation (name) in the Functional perspective. Design decisions will pair such functions with possible implementations selected on the basis of appropriate Technology studies.

The CxID notation envisions that in a given configuration the functional designation would be sufficient (inasmuch as in a given vehicle instance during a specific mission the implement for a given function is fixed).

However, it is clear that a variety of contexts would require being able to specify the implement in more detail, e.g., when running simulations using different “virtual” implementations, or when operations require substituting one field replaceable unit with another.

Constellation program naming scheme provides a mechanism to represent the filling of a particular slot by a given technology choice, and beyond that by a particular concrete device implementing that technological choice. The mechanism is illustrated below:

A disconnect valve in some assembly has the following CxID constructed to support the functional perspective:

ET_0/LH2_0/DscnctVLV_1

The implement can then be associated with this functional designation by appending it enclosed in square brackets; accordingly

ET_0/LH2_0/DscnctVLV_1//MP/SP:40141605:SlndVLV<NC,3Way>

The CxID so constructed designates the technical choice for the implementation of the disconnect valve function.

Moving on to realization, the following designates the realization of this technical choice in a given configuration:

ET_0/LH2_0/DscntVLV_1//MP/SP:40141605:SlndVLV<NC,3Way>//MP/SU:INGERSOLL-RAND/CAT33P-120-A

Beyond this, if required, the specific serial number can be appended:

ET_0/LH2_0/DscntVLV_1//40141605:SlndVLV<NC,3Way>//MP/SU:INGERSOLL-RAND/CAT33P-120-A_123456AZ55

K1.10.12
Partial list of Rules related to Perspectives:

DESIGNATION OF PERSPECTIVES [NIR - 27]

Perspectives MUST be designated by “//XX” where XX is the Perspective Prefix designated in the PERSPECTIVE PREFIX TABLE.

TABLE 2: PERSPECTIVE PREFIX TABLE

	Perspective Prefix
	Perspective Description

	FP
	Designation of the Functional Perspective. This perspective is the default perspective. If there is no prefix given, the functional perspective is assumed.

	AP
	Designation of the Automation or Avionics Perspective

	OP
	Designation of the Operational Perspective

	TP
	Designation of the Technology Perspective

	MP
	Designation of the Manufacturing Perspective

	CP
	Designation of the Contractual Perspective

DESIGNATION OF THE PERSPECTIVE CLASSIFICATION [NIR - 28]

Perspectives are further classified into two perspectives: These perspectives MUST be designated by ‘XX//YY’ where ‘XX’ is the Perspective Prefix and ‘YY’ is the Classification Prefix designated in the CLASSIFICATION PREFIX TABLE.

TABLE 3: CLASSIFICATION PREFIX TABLE

	Perspective Prefix
	Classification Prefix
	Classification Description

	MP
	SP
	Designation of the Product and Service Classification.

	MP
	SU
	Designation of the Supplier Classification

	FP
	AG
	Designation of the Assembly Grouping

	FP
	IF
	Designation of the Interface Grouping

	FP
	GR
	Designation of the General Grouping

	OP
	CL
	Designation of the Communications Exchange (a pair of communicating Constellation Systems)

ATTRIBUTE-BASED SPECIFICATION OF TECHNOLOGY ENTITIES [NIR - 29]

A technology entity, such as a device, MAY be specialized by including metadata attributes in the name of the entity. These attributes are added as an angle-bracketed list suffix.

SPECIFYING THE PERSPECTIVE [NIR - 30]

A perspective SHOULD be specified by using a reserved perspective designator as described in Table 3 followed by a colon character ‘:’.

SWITCHING THE PERSPECTIVE [NIR - 31]

Switching of the perspective MUST be indicated by the double slash characters ‘//’ followed by the perspective designator

SPECIFYING MULTIPLE INHERITANCE [NIR - 32]

A ‘sub technology’ MAY be part of the typological decomposition of two different technologies. Multiple parents are separated by the colon “:” character

SPECIFYING NON-INHERITANCE RELATIONSHIP TO MULTIPLE ENTITIES [NIR - 33]

A set constructor MUST be used when an item is connected to multiple other items by way of assembly or some other grouping. This is an interfacing relationship and should not be confused with the multiple inheritance relationship. For example, when CEV docks with the space station, the docking mechanism is part of the functional decomposition for both vehicles, specified using the designator for the relationship followed by the opening bracket ‘[‘, a comma separated list of entities and a closing bracket ‘]’.

K2.0
CxCUI Naming Guidance

CxCUI Naming Guidance
What is a CxCUI?

A CxID uniquely identifies a parameter or command through a compositional hierarchy.

CxCUI stands for Constellation Compact Unique Identifier. It is a fixed-length (compact) identifier used for the telemetry/telecommand and derived either algorithmically or through mapping tables from the CxID. Any CxID needed for the telemetry/telecommand can be translated into CUI. Similarly, any CUIs must be translatable into CxID. Because of the constraints of fixed length, some of the detail of CxIDs is collapsed in CxCUI.
What needs a CUI?

CUIs will be used to uniquely identify and name command or telemetry parameters - in particular for parameters that will be exchanged between systems or subsystems, housed in database/recon products which will be exchanged by different systems, and/or used by flight or mission operations in displays and other telemetry and command applications. This includes any parameter that is available to be telemetered (i.e. put into a packet).

Note that the scope of this is not intended to cover all things like the CxIDs. It is not intended to cover files, voice, or imagery data. If parameters are only used locally within s/w partitions and will not be viewed by operators, then it probably does not need a CxCUI.

CxCUIs can be thought of as equivalent of a Function Designator (FD) (as used at KSC), a Measurement Stimulus Identification (MSID) (as used for the Space Shuttle) and a Program Unique Identifier (PUI) (as used for the Space Station).

CxCUI Structure:

[image: image24]
CxCUI Field Defintions:

Vehicle/SubVehicle

The first two characters in the CxCUI identify the major Space Vehicles and Ground Operations segments that the parameter originates from and/or is related to. The first character identifies the vehicle, Control Center or Ground Station. The second character identifies a major section of the vehicle or further specifies types of Ground Operation. For example: AU = Ares Upper Stage, PS=Payload Systems. There may be some cases where the second character is simply for clarification because there is not a sub-vehicle. For example EVA = EV.

System

For the CxCUI, a ‘system’ designates a collection of boxes that work together to perform some function or group of related functions. For example: Electrical Power, Guidance & Control, Propulsion.

Subsystem

A subsystem may be a single box within the system or (more likely) a group of boxes whose functions are very closely linked. For the CxCUI, subsystems may also be software -- at the Computer Software Configuration Item (CSCI) level. For example: Primary Flight Control computer, Video, Fire Detection & Suppression.

Unit Identifier

This field may be associated with either the Subsystem or the Component field of the CxCUI to help qualify it or further describe it. It can be a numerical field that will be used to identify multiple pieces of the subsystem/component that are basically identical (a physical identifier). Or it can be used to help identify primary or backup logical devices (logical identifier). Or it can be used as a type to add descriptive information to the component e.g. LH TNK for Liquid Hydrogen Tank (type identifier).

Component

A component is a piece of the subsystem that performs a very specific function. When used for software it is the Computer Software Component (CSC) within the CSCI or the application. A component is generally not subject to further decomposition. For example: Camera, Smoke Detector.

Index

The index field of a CxCUI is a number between 000 and 999 that is used to identify the unique measurement and/or sensor, reading, command, etc.

Ranges or logic can be applied to this field to assist in identifying sensors or groups of related measurements, but this is not required.

Parameter Type

Is not a unique part of the CxCUI (i.e. the parameter can be uniquely identified by the first 14 characters; the last two characters simply provide additional information for the end user.) The first character within the Parameter Type field identifies the Data Type (Float, Boolean, etc). The second character within the Parameter Type designates the category of units that the parameter represents (temperature, pressure, velocity, etc) or clarifies what type of command or group parameter is being represented (modifiable command, command response, container, etc.)

Some examples of codes to be used for each field within the CxCUI

(this is NOT a complete list):

Vehicle/Sub-vehicle

	AC
	Ares 5 Core Stage

	AD
	Ares Earth Departure Stage

	AE
	Ares 1 Upper Stage Engine

	AF
	Ares 1 First Stage

	AI
	Ares 5 Interstage

	AL
	Ares 5 Left Solid Rocket Booster

	AR
	Ares 5 Right Solid Rocket Booster

	AU
	Ares 1 Upper Stage

	EV
	EVA

	GS
	Ground Systems

	MS
	Mission Systems

	MT
	Mission Systems Training Facility

	OC
	Orion Crew Module

	OP
	Orion Payloads

	OS
	Orion Service Module/Spacecraft Adapter

	SN
	Space Network

	TA
	Test Facility – Ares DSIL

	TC
	Test Facility – Orion CAIL

	TD
	Test Facility - DSIL

	TE
	Test Facility – Orion EEST

	TG
	Test Facility – Orion GRC

	TM
	Test Facility – Ares MPTA

	TO
	Test Facility – Orion O&C

	TS
	Test Facility – Orion ESTL

Systems
	AB
	Abort Systems

	CD
	Command & Data Handling

	CT
	Communication & Tracking

	DC
	Displays & Controls

	DF
	Developmental Flight Instrumentation

	EC
	Environmental Control & Life Support

	EP
	Electrical Power System

	GN
	Guidance Navigation & Control

	LR
	Landing & Recovery

	ME
	Mechanical/Mechanisms

	PY
	Pyrotechnics

	RB
	Robotics

	RC
	Reaction Control System

	RO
	 Roll Control System

	ST
	Structures

	SW
	Software – Flight or Ground

	TE
	Test Equipment

Subsystems

	AR
	Air Revitalization

	FD
	Fire Detection & Suppression

	GH
	Gaseous Helium

	GM
	Gimbals

	KA
	Ka-band

	LO
	Liquid Oxygen

	PW
	Potable Water

	SB
	S-band

	SN
	Sensors

	VD
	Video

	WM
	Waste Management

Unit Identifier

Unit Identifier - Physical

1, 2, 3 or A, B, C

Unit Identifier - Logical

	PR
	Primary

	SC
	Secondary

Unit Identifier – Type

	O2
	Oxygen

	GH
	Gaseous Helium

Component

	ACT
	Actuator

	ANT
	Antenna

	AMP
	Amplifier

	BAT
	Battery

	CAM
	Camera

	CMP
	Computer

	FAN
	Fan

	HTR
	Heater

	MSD
	Mass Storage Device

	PMP
	Pump

	RCV
	Receiver

	TNK
	Tank

	THR
	Thruster

	VLV
	Valve

	VNT
	Vent

	XPR
	Transponder

Last 2 Characters

15th Character – Data type
	A
	Array

	B
	Boolean

	C
	Command

	E
	Enumerated

	F
	Floating Point

	G
	Ground (Containers other than command)

	H
	Hexadecimal

	I
	Integer

	T
	Text

	Z
	Times & Dates

16th Character – Datatype Extension or Unit Catagory

If 15th character is A, B, C, E, F, H, I, T or Z then 16th character will be one of the following:

	A
	Angle, Angular Velocity, Angular Frequency, Attitude, Rotation

	B
	Electrical Phase, Electromagnetic Field

	C
	Current, Charge, Conductivity

	D
	Density

	E
	Energy, Power, Work, Heat Transfer

	F
	Frequency, Cycles

	I
	Intensity, Luminance, Radiance, Db, Brightness

	L
	Length, Distance, Deflection, Position, Altitude, Area, Volume

	M
	Mass, Force, Weight, Strain, Momentum, Angular Momentum

	N
	Radiation, Contamination, Toxicity, Concentration

	O
	Resistance, Impedance

	P
	Pressure, Mechanical Stress, Viscosity

	Q
	Quantity, Humidity, Percent

	R
	Rate, Flow, Speed, Velocity, Acceleration

	T
	Temperature

	S
	Scalar, Mathematical Value

	U
	Undefined or Uncalibrated

	V
	Voltage

	X
	Excitation, Vibration

	Z
	time and date

If 15th character is C (Command), then 16th character can be one of the following:

	M
	Command Instance with changeable fields (modifiable)

	P
	Command Instance with no changeable fields (predefined)

	S
	Command Structure

If 15th character is G (Group), then 16th character can be one of the following:

	C
	Containers

	D
	DEM

	G
	Generic container

	L
	Command Log entry

	R
	Command Response

	S
	Sets

	W
	Caution & Warning

Names used in CxCUIs

The names for vehicles, systems, subsystems, and components have been provided by the stakeholders who use these names in their IPCLs, Master Equipment Lists, Operations, etc. These names are generally the Common Names for vehicles, systems, etc. that are used by the projects and program. The names provided are reviewed by other stakeholders for consistency across the program. Whenever possible, generic terms that can be used by various projects (now and in the future) are chosen for each category.
Rules used when selecting codes for each CUI field.

Once the names for each vehicle, system, subsystem, and component have been identified, they are given a 2 or 3 alpha-numeric code which will fit into the respective field in the CUI structure. The following rules from the Data Architecture Naming and Identification Rules document are used as guidelines for developing the 2 or 3 letter code. These codes are only intended for use within the CUIs and are not intended to be acronyms or Short Identifiers used throughout the program (although, whenever possible, they match acronyms or SIDs that have already been defined).

If an accepted NASA or industry acronym is already in use and fits the number of characters, we use it.

4.11.1 USE OF RESERVED INDUSTRY WORDS [NIR - 1]
Industry-standard terminology as defined in the CxDA Naming Registry SHOULD be preserved as is.

USE OF RESERVED NASA WORDS [NIR - 2]
Certain words, as defined in the CxDA Naming Registry SHOULD be used and abbreviated as currently defined.

USE OF RESERVED NASA PHRASE ABBREVIATIONS [NIR - 3]
Certain phrase abbreviations, as defined in the CxDA Naming Registry SHOULD be used as is.

For one word names, we generally take the first two letters or the first two consonants of the name – whichever does not conflict with other codes for that field and makes the most sense to the Naming Working Group.

If the name consists of two or more words, generally we use first letter of the first two words. If that does not provide a unique code, we go to the first character of the third (or fourth) word in the name to get a unique and recognizable code.

ABBREVIATION OF LONG PHRASES [NIR - 4]

An acronym for phrases of three or more words MUST be formed by taking the first letter of each word, with all letters should be in the uppercase. Words such as definite articles and coordinating conjunctions, that is, ‘and’ and ‘or’ MUST be dropped.

Other naming rules that are taken into consideration when coming up with codes for CUI fields:

RESOLVING NON-UNIQUE PHRASE ABBREVIATIONS [NIR - 5]

If the CxSID constructed using Error! Reference source not found. is not unique, an additional letter MUST be taken from the first discriminating word of the phrase. If the abbreviation is still not unique then another letter is taken from each subsequent discriminating word in the phrase rule until a unique abbreviation is formed. Lowercase letters MUST be used for the addition letters. The discrimination must consider context of use.

ABBREVIATIONS OF WORDS AND PHRASES WITH CHEMICAL NAMES [NIR - 6]

Words and phrases that include Chemical Names MUST use industry standard abbreviations. When a chemical name appears in a list the next word is abbreviated according to the rules for single words. A hyphen must be used to separate the chemical name from the rest of the phrase.
The Same two-character codes can be used for different fields if necessary, although we try to keep them unique whenever possible. For example, GN may stand for Guidance Navigation & Control when used in the System Field and for Gaseous Nitrogen Subsystem when used in the subsystem field.
Note that one of the advantages of a fixed length identifier is to be able to scan down certain columns, knowing that the characters in those columns have specific meaning related to that position within the identifier. So if you saw GN in the third and fourth columns of a CUI, you would know that it stood for GNC – because Gaseous Nitrogen is a subsystem and would not be found in those columns.

Other rules

Valid characters for CUIs are A-Z and 0-9. Underscores and other special characters are not allowed. Lower case letters are not allowed.

The letter O and the letter I shall not be used in the unit field because it is an alpha-numeric field and these can be easily confused with the numbers 0 and 1.

VS-SS-SS-U#-CCC-333-PP

Vehicle and Sub-vehicle Type

1 Alpha Character each

Unit Identifier, 2 Alpha-Numeric

System Type, 2 Alpha Chars

Subsystem Type or CSCI, 2 Alpha Chars

Command/Parameter Type and Type Extension/Units, 1 Alpha Character each

Index, 3 Num Characters

Component (h/w or s/w) Type, 3 Alpha Chars

VSSSSSU#CCC333PP

9
The electronic version is the official approved document.

Verify this is the correct version before use.

_1251192997.vsd
A1

A3

A2

Start bit i

32

A is a 16 bit Multiple Sampled parameter where:

A1 is sample 1 at start bit i.
A2 is sample 2 at start bit i + length=16 + sample offset=32.
A3 is sample 3 at start bit i + 2*(length=16 + sample offset=32).

32

16

16

16

_1267335745.vsd
A1

A3

A2

Start bit i

32

Multiple Sample Sampling where:

A is a 16 bit parameter located at start bit i, sample offset = 32.

32

16

16

16

DEM Header and Content Map

1

DEM Header and Content Map

A1

A3

A2

Start bit i

32

16

16

16

32

2

A1

A3

A2

Start bit i

32

16

16

16

32

DEM Header and Content Map

3

_1267506185.vsd
Emergency
Min

Warning
Min

Warning
Max

Emergency
Max

Caution
Min

Advisory
Min

Advisory
Max

Caution
Max

Normal

_1267506246.vsd
Normal

Advisory
Min

Advisory
Max

Normal

Caution
Min

Warning
Min

Warning
Max

Caution
Max

Emergency
Min Max

_1267335708.vsd
DEM Header and Content Map

DEM Header and Content Map

A

Start bit i

Single Sample Sampling where:

	A is a 16 bit parameter located at start bit i.

16

A

Start bit i

16

A

Start bit i

16

DEM Header and Content Map

1

2

3

_1250675257

_1251106078.vsd
A

C

B

Start bit i

Start bit j

Start bit k

A is a 16 bit parameter located at start bit i.
B is an 8 bit parameter located at start bit j.
C is a 32 bit parameter located at start bit k.

32

8

16

_1247909060.unknown

_1247909113.unknown

