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Amplified ADC raw data counts are converted into floating-point values that represent the original transducer voltage output (mV) as shown below.
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Determination of Transducer Excitation

Many transducer EU conversion equations depend upon the excitation voltage (or, in some cases, current) supplied to the transducer. The excitation value for each transducer can be determined in one of three ways. (The method to be used for each transducer is listed in the Measurements table CalType field for that transducer.) A description of each method follows:

Current Sense Resistor (ExcMvCurrSense)

This method is accurate only for transducers with a known, constant impedance. First, the current in the transducer excitation circuit is determined using a current sense resistor in the circuit:
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The current can then be multiplied by the transducer impedance to obtain an excitation voltage:
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Operator-Specified (ExcMvSpecified)

For transducers with integral excitation regulation, no additional excitation determination is necessary. Also, for some transducer types; the exact excitation can only be obtained by a voltage measurement at the transducer. In these cases, the operator must specify the transducer excitation:
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Current Sense for Constant Current Excitation (ExcMaCurrSense)

Transducers requiring constant current excitation (e.g. RTDs, potentiometers) typically use the current-sensing resistor method to determine the value of the excitation current. Input hardware configuration for these transducers provides a more accurate current-sensing circuit in addition to the one used for constant voltage excited transducers. Care must be exercised in the entry of the associated instrumentation database parameters.
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Measurements and Calculated Values

A “measurement” VID is the default EU conversion assigned to each channel in a database. The conversion equation for each measurement VID transforms the raw digital counts from a single input channel, plus the instrumentation parameters for that channel, into a single output value with engineering units of measure. Note the one-to-one correspondence between channels and measurement VIDs.

A “calculated value” VID is an EU conversion that is based not on one channel, but on up to twenty other VIDs. The conversion equation for each calculated VID transforms the EU values from specified measurement VIDs and/or other calculated VIDs, plus up to twenty constant coefficients, into a single output value with engineering units of measure. Note that the number of calculated VIDs in a database has no limit, but that a calculated VID dependent upon other VIDs should be placed after those other VIDs in the conversion sequence.

A Zero Engineering Units Reference (ZEUR) scan is an EU scan taken at an appointed zero reference test condition.  ZEUR scans may be taken at any point during testing, with the most recent (or “active”) ZEUR scan subtracted from all subsequent converted scans.  Subtracting ZEUR forces VIDs to have a zero value at the reference condition, so that subsequent scans represent only the delta value actually caused by the test load.  The first ZEUR scan for each database is initialized to zero, and the ZEUR feature may be enabled/disabled for each VID at any time prior to each ZEUR scan.  For a VID with ZEUR disabled, the calculated value from a new ZEUR scan is discarded, and that VID’s value from the previous ZEUR scan is propagated to the new ZEUR scan.

The Engineering Units Offset factor (EUO) is a constant value (in engineering units) that may be added to a measurement.  It is not included, however, when a ZEUR scan is converted. (For example, a VID with an EUO of 350 and ZEUR enabled will read 350 immediately after a ZEUR scan, instead of zero.)

Each VID also has associated with it a six-character string representing its units, and an integer representing the number of decimal places for tabular display.

Measurement Conversion Types

List of Measurement Conversion VID types

Equation


VID type code
Linear



MeasLinear
Polynomial


MeasPoly
Table Lookup


MeasMvToEuTable
RTD (Resistance Temperature Device)

MeasRTD
Strain Gage, Quarter Bridge)

MeasQtrBrg
Measurement conversion types, with associated parameters and conversion equations, are shown below.

Linear (MeasLinear)
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Polynomial (MeasPoly)
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The actual computation is carried out in nested polynomial form to avoid the time-consuming calculation of the exponential powers shown above.  (Execution time is reduced because fewer multiply operations are needed.)  The nested form of the equation is:
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mV-to-EU Table Lookup (MeasMvToEuTable)

The EU value for each lookup table VID is found by linear interpolation within the appropriate EU lookup table for that VID.  Lookup tables reside in a database file separate from the instrumentation database (because almost all lookup tables, such as those for thermocouples and RTDs, apply universally, while instrumentation databases are test-specific).  The path to the lookup table database file can be set or modified within the test mode application.

The lookup table must consist of three fields: “dblMv”, “dblEu”, and “dblSlope”.  In each table record, “dblEu” is the EU value corresponding to “dblMv” millivolt output from the transducer. The value “dblSlope” is pre-calculated as shown below to speed interpolation during run-time.  The records must be sorted in order of ascending “dblMv”.  To convert each scan, a seek is performed in the lookup table for the first record such that 
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where   e1 = transducer output (mV).

If the record found is referred to as record n, then
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The derivation for the slope and EU conversion is as follows.  Assume the transducer output e1 satisfies 
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To linearly interpolate between rows n and (n-1), use the formula
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and solve for EU:
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Note that the first quantity in brackets is independent of the scan data, and thus can be a one-time calculation before the test:
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If 
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Resistance Temperature Detector (RTD) Table Lookup (MeasRTD)

The millivolt output from an RTD must be converted into a resistance value; the resistance value is then used as the entry into a lookup table.
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For RTDs, the lookup table must consist of three fields: “dblOhms”, “dblEu”, and “dblSlope”.  In each table record, “dblEu” is the EU value corresponding to “dblOhms” resistance from the RTD element. The value “dblSlope” is pre-calculated to speed interpolation during run-time.  The records must be sorted in order of ascending “dblOhms”.  To convert each scan, a seek is performed in the lookup table for the first record such that 
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where   R = RTD element resistance (().

If the record found is referred to as record n, then
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As with mV-to-EU table lookup, the slope is independent of the scan data, and thus can be a one-time calculation before the test:
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If 
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Quarter Bridge Strain Gage (MeasQtrBrg)
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where
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The above equation is implemented in the form below for faster computation:
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where d0 and d1 can be pre-calculated from
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Calculated Conversion Types

Equation


VID type code

Polynomial
CalcPoly  (not to be confused withMeasPoly)

Weighted Total
CalcWeightedTot 
2-Norm
Calc2Norm
Arc 
CalcArc
Absolute Value
CalcAbsVal
Digital Channel Bit
CalcBit
Multiply/Divide
CalcMultDivide
Parametric Exponential
CalcParamExp
Square Root
CalcSqrt
Extended von Mises
CalcExtVM
Constant
CalcConstant  (has its own table)


Temperature-Corrected Leg Strains
CalcSgTempCorr  (has its own table)

Rosettes:
(have their own table)

Biaxial (0(, 90()
CalcBiax
Triaxial (0(, 45(, 90()
CalcTriax45 (legs numbered counterclockwise)

Triaxial (0(, 45(, 90()
CalcTriax45CW (legs numbered clockwise)

Triaxial (0(, 60(, 120()
CalcTriax60
Calculated conversion types, with associated equations, are shown below.  The following parameters are included (not all equations use all 20 coefficients or input VIDs):
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Note that constant VIDs ONE and ZERO (with values of 1 and 0, respectively) are always available as placeholders to “de-generalize” the calculation equations.  For example, a simple multiplication of two VIDs can be set up in a CalcMultDivide VID by assigning input VID2 = ONE.

Polynomial (CalcPoly)
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Weighted Total (CalcWeightedTot)


[image: image42.wmf]ZEUR

EUO

VID

a

VID

a

VID

a

VID

a

EU

-

+

+

+

+

+

=

)

(

)

(

)

(

)

(

19

19

2

2

1

1

0

0

L


2-Norm (Calc2Norm)
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Arc (CalcArc)
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Absolute Value (CalcAbsVal)
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Digital Channel Bit (CalcBit)
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where  & = bit-wise AND operator


>> = right-shift operator


a0 = integer from 0 to 15 (bit of interest)


EU = value of bit of interest (0 or 1)

Multiply/Divide (CalcMultDivide)
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Parametric Exponential (CalcParamExp)
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where exp = e ( ln e = 1 )

Square Root (CalcSqrt)
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Extended von Mises (CalcExtVM)
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The following three calculated conversion types have dedicated tables in the instrumentation database.

Constant (CalcConstant)
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where
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The constant VIDs “ZERO” and “ONE” are automatically included in every conversion sequence.

Temperature-Corrected Leg Strains (CalcSgTempCorr)
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Rosettes

“Rosettes” are combinations of two or three strain gage “legs” oriented in a specific geometry.  The geometry for a rosette determines its calculation type. Parameters for all four rosette calculation types are stored in the “CalcRosettes” table.  There are multiple EU output values for each rosette calculation type.  The geometries and associated calculation types for SLTMAS-PC are as follows:

	Rosette Geometry
	SLTMAS Type
	# of Output VIDs

	
	
	

	Rectangular Biaxial (0(- 90(, aligned with principal axes)
	CalcBiax
	11

	Rectangular Triaxial (0(- 45(- 90( counterclockwise)
	CalcTriax45
	15

	Nonstandard Rectangular Triaxial (0(- 45(- 90( clockwise)
	CalcTriax45CW
	15

	Delta Triaxial (0(- 60(- 120()
	CalcTriax60
	10


Each “leg” of a rosette must appear in the conversion list as an individual measurement VID of type MeasQtrBrg with units of “microstrain” (((); if desired, each leg measurement VID can be further input into a strain gage temperature-correction calculated VID (type CalcSgTempCorr). Only these two types of VIDs will serve as valid “leg” input VIDs for rosette calculation types.  The fields szLeg1VID, szLeg2VID, and szLeg3VID specify the individual strain gage leg VIDs that are input into the rosette calculations for a given rosette VID. The CalcTriax45 equations assume leg 1 is oriented with respect to the reference axis by 0(, leg 2 by 45(, and leg 3 by 90(. The CalcBiax equations assume that the reference axis is principal, and that leg 1 is oriented with respect to the reference axis by 0(, leg 2 by 90(. The CalcTriax45CW equations assume leg 1 is oriented with respect to the reference axis by 0(, leg 2 by (- 45(), and leg 3 by 90(. The CalcTriax60 equations assume leg 1 is oriented with respect to the reference axis by 0(, leg 2 by 60(, and leg 3 by 120(.

The following terms appear in the equations below for each of the four rosette calculated VID types (note that EUO and ZEUR are ignored for rosette types):
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Biaxial (CalcBiax)

	Rosette Value
	Code Appended to VID
	Example: VIDs Generated for Rosette VID B_AFT_131
	Corresponding Symbol in Equations Below

	Transverse Sensitivity-Corrected Leg Strains


	-0M
	B_AFT_131-0M
	(t1

	
	-90M
	B_AFT_131-90M
	(t2

	Leg Stresses


	-0S
	B_AFT_131-0S
	1

	
	-90S
	B_AFT_131-90S
	2


	Principal Strains
	-MAXM
	B_AFT_131-MAXM
	(max

	
	-MINM
	B_AFT_131-MINM
	(min

	
	-SHRM
	B_AFT_131-SHRM
	(max

	
	-ANG
	B_AFT_131-ANG
	(p



	Principal Stresses
	-MAXS
	B_AFT_131-MAXS
	(max

	
	-MINS
	B_AFT_131-MINS
	(min

	
	-SHRS
	B_AFT_131-SHRS
	(max




Transverse Sensitivity-Corrected Leg Strains
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Leg Stresses
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Principal Strains
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Principal Stresses
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Rectangular Triaxial Standard (CalcTriax45) and Clockwise (CalcTriax45CW)

	Rosette Value
	Code Appended to VID
	Example: VIDs Generated for Rosette T_FWD_43597
	Corresponding Symbol in Equations Below

	Transverse Sensitivity Correction


	-0M
	T_FWD_43597-0M
	(t1

	
	-45M
	T_FWD_43597-45M
	(t2  

	
	-90M
	T_FWD_43597-90M
	(t3

	Leg Stresses


	-0S
	T_FWD_43597-0S
	1

	
	-45S
	T_FWD_43597-45S
	2

	
	-90S
	T_FWD_43597-90S
	3


	Principal Strains
	-MAXM
	T_FWD_43597-MAXM
	(max

	
	-MINM
	T_FWD_43597-MINM
	(min

	
	-SHRM
	T_FWD_43597-SHRM
	(max

	
	-ANG
	T_FWD_43597-ANG
	(p


	Principal Stresses
	-MAXS
	T_FWD_43597-MAXS
	(max

	
	-MINS
	T_FWD_43597-MINS
	(min

	
	-SHRS
	T_FWD_43597-SHRS
	(max



	Von Mises and Orthogonal Shear
	-VM
	T_FWD_43597-VM
	(vm (von Mises yield criterion)

	
	-ORT
	T_FWD_43597-ORT
	(orth (orthogonal shearing stress referenced to gage legs)


Transverse Sensitivity-Corrected Leg Strains
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Leg Stresses
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Principal Strains
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Principal Stresses


[image: image63.wmf](

)

(

)

)

1

(

2

10

1

10

1

10

max

6

max

max

min

2

6

min

min

max

2

6

max

v

E

v

v

E

v

v

E

+

×

=

+

-

×

=

+

-

×

=

-

-

-

g

t

e

e

s

e

e

s


Von Mises and Orthogonal Shear
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Delta Triaxial (CalcTriax60)

	Rosette Value
	Code Appended to VID
	Example: VIDs Generated for Rosette DT_LEFT_992
	Corresponding Symbol in Equations Below

	Transverse Sensitivity Correction


	-0M
	DT_LEFT_992-0M
	(t1

	
	-60M
	DT_LEFT_992-60M
	(t2

	
	-120M
	DT_LEFT_992-120M
	(t3


	Leg Stresses

(Not available)


	
	
	

	Principal Strains
	-MAXM
	DT_LEFT_992-MAXM
	(max

	
	-MINM
	DT_LEFT_992-MINM
	(min

	
	-SHRM
	DT_LEFT_992-SHRM
	(max

	
	-ANG
	DT_LEFT_992-ANG
	(p


	Principal Stresses
	-MAXS
	DT_LEFT_992-MAXS
	(max

	
	-MINS
	DT_LEFT_992-MINS
	(min

	
	-SHRS
	DT_LEFT_992-SHRS
	(max


Transverse Sensitivity-Corrected Leg Strains
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Leg Stresses

Not available.

Principal Strains
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Principal Stresses
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APPENDIX
Derivation of Stress / Strain Relationships for SLTMAS

This document is written to show how the stress and strain equations in the SLTMAS were derived.

Part 1.0, Basic Strain Equations

Because all of the strain data available to the data system is from strain gages, the assumption is made that normal stresses are zero, and thus all the stresses are within the plane of the gages.

Plane stress assumes that:

1.1)
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Because the principal stresses and strains are coincident, plane stress also means that:

1.2)
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However, plane stress does not imply plane strain, so 
[image: image70.wmf]e
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 is not necessarily zero.

The general equation for strains in the plane of a plain stress field is:

1.3)
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where n defines the normal to the strain plane in question, and l and m are the direction cosines to the normal.

With the use of some trigonometric identities, this equation can be reduced to:

1.4)
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Differentiating with respect to θ, and setting the resultant to zero to find local maximums and minimums yields:

1.5)
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Solving for θ yields:

1.6)
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Note that there are 2 values of tangent that satisfy equation 6).  One defines the angle to the maximum strain and the other defines the angle to the minimum strain.

Substituting the values of sin2θ and cos2θ back into equation 4) yields maximum and minimum values of strain within the plane:

1.7)
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Similar derivations show that 
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is at 45º to the principal strain angles and has a value of:

1.8)
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Part 2.0, Equations for a 0-45-90 CCW Strain Gage Rosette


[image: image79]
If the strain gage being used is a 0-45-90 rosette with CCW oriented gage legs as shown above, then equation 1.3) becomes:

2.1)
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Solving for 
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 yields:

2.2)
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Using equation 2.2) and the gage nomenclature established, equation 1.6) becomes:

2.3)
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, equation 1.7) becomes:

2.4)
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, and equation 1.8) becomes:

2.5)
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Now, if we let:
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equations 2.2), 2.4), and 2.5) can be rewritten as:

2.6)
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 EMBED Equation.3  [image: image88.wmf], 

2.7)
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2.8)
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To find the maximum and minimum values of strain and stress, we use built-in functions of the software to define:

2.9)
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2.10)
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Using Hooke’s Law and equilibrium equations for plane stress we develop:

2.11)
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2.12)
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 (Note that the first part of this equation can also be used to calculate 
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Equations 2.14) thru 2.16) can also be developed using principal stresses and stress equilibrium equations.

The equilibrium plane stress equation,

2.17)
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 can be simplified by using principal stresses to:
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If we let Delta θ be the positive (CCW) angle between the principal axis (
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) and an orientation (
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) where the value of the normal stress is desired, then by defining:
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We can simplify equations 2.14) thru 2.16) to:
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Noting that:
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The maximum distortion energy theory of failure defines the von Mises stress as the stress limit for failure.  The plane stress version of the von Mises stress is defined as:
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Part 2.1, Determination of In-Plane Angle

It should be noted that equation 1.6) yields two solutions for 2θ, 180º apart.  One solution defines the angle to the maximum strain and one defines the angle to the minimum strain.  Additionally, if the cos2θ is zero, then the arctan2θ can not be calculated.

Noting that arctan2θ returns an angle 90 < 2θ <-90, and calling this calculated angle 2
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, the following may be used to find the principal angles (
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If C = 0 then 2
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2.1.1)
If D = 0 then 2
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(Covered by the logical equation below)

If 2θ ≥ 0 then 2
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If 2θ < 0 then 2
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 = 180 + 2
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, and 360 + 2
[image: image121.wmf]q

cal


Finally, we can determine which principal angle defines the angle to the maximum strain by using equation 1.4) as follows:
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, then the angle chosen is the angle to the maximum strain.

Part 2.2, Equation Modifications Due to CW rotation of the 0-45-90 Strain Gage Rosette

For CW rotations, equation 2.1) becomes:
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, and equation 2.2) becomes:
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Part 2.3, Out of Plane Effects

Normal strain out of the plane can be calculated from:
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For a more complete look at maximums and minimums that include out of plane values:

2.3.2)

[image: image127.wmf](

)

e

e

e

4

max

max

3

,

max

=

D


2.3.3)

[image: image128.wmf](

)

e

e

e

4

min

min

3

,

min

=

D


2.3.4)

[image: image129.wmf](

)

0

,

max

max

max

3

s

s

=

D


2.3.5)

[image: image130.wmf](

)

0

,

min

min

min

3

s

s

=

D


2.3.6)

[image: image131.wmf]2

min

3

max

3

max

3

s

s

t

D

D

D

-

=


Part 3.0, Equations for a 0 - 60 – 120 CCW Strain Gage Rosette
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If the strain gage being used is a 0 – 60 – 120 rosette with CCW oriented legs as shown above, then assuming 
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and solving equation 2.1) for 
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Solving for simultaneously
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Using equation 1.6) we find:
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Using equation 1.7) we find:
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Then using equation 1.8)
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Now, if we let:
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then equations 3.6), 3.8), and 3.9) can be rewritten as:
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Equations 2.9) thru 2.13), 2.19), 2.20), and 2.22) thru 2.24) can then be used to calculate 
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Part 3.1, Determination of In-Plane Angle

Part 2.2 can be used to determine in-plane angle, with the following modification to equation 2.1.2):

3.1.1)
If:
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, then the angle chosen is the angle to the maximum strain.

Part 3.2, Equation Modifications Due to CW rotation of the 0 – 60 -120 Strain Gage Rosette

For CW rotations, equations 3.1) and 3.2) become:
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A quick evaluation of the equations shows that all the calculations for CWW rotations apply to CW rotations without change.

Part 3.3, Out of Plane Effects

Normal strain out of the plane can be determined with the following modification to equation 2.3.1):
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Equations 2.3.2) thru 2.3.6) can be used to calculate 
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Part 4.0, Equations for a 0 – 90 Strain Gage Pair
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If it is assumed that the stress is plane, and that the gage legs are aligned with the principal stress directions, then the assumptions of equations 1.1) and 1.2) need to be supplemented with:

4.1)
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Additionally, because there are only two strain gages to work with, you have to assume that the gages are, in fact, aligned with the principal directions.  Because there are only two strain gages, if they are not aligned with the principal directions, there is no way to perform all the calculations shown in Part 2.0) to calculate the true principal directions and magnitudes.

Equation 1.5) tells us that the maximum and minimum strain values can be found when:
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 (as expected) therefore 2θ = 0º, or 180º
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 can be found with the following modification to equations 2.9) and 2.10):
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Examination of equations 1.7) and 1.8) leads to:

4.5)
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Equations 2.11) thru 2.13) and 2.24) can be used to find 
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Part 4.1, Determination of In-Plane Angle

Noting that 2θ = 0º, or 180º, no in-plane angle calculations are required.  By inspection, the principal angle is associated with the strain gage associated with 
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Part 4.2, Equations Modifications Due to CW Rotation of the 0-90 Strain Gage Pair
No equation modifications are required for 0-90 strain gage pairs.

Part 4.3, Out of Plane Effects

Normal strain out of the plane can be calculated from the following modification to equation 2.3.1):

4.3.1)
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Equations 2.3.2) thru 2.3.6) can be used to calculate
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