

 STRS-00001
National Aeronautics and Phase 1 Architecture (Preliminary Document)
Space Administration EFFECTIVE DATE 12 Dec 05

Space Operations Mission Directorate

National Aeronautics and Space Administration, Headquarters
Washington DC 20546-0001

Space Telecommunications Radio System

STRS

Open Architecture Description

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 2 of 95

2

DOCUMENT HISTORY LOG

Status

(Baseline/
Revision/
Canceled)

Document
Revision

Effective
Date Description

Baseline Prelim 12 Dec 05 STRS Architecture Description – Draft release for
SAT red team review and industry comments.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 3 of 95

3

STRS Architecture Description Document

Submitted By:

Richard C. Reinhart
Glenn Research Center

Allen Farrington
Jet Propulsion Laboratory

Dave Israel
Goddard Space Flight Center

Concurred by:

Pat Eblen
SDR Architecture Team Lead

Space Operations Mission Directorate

Approved by:

John Rush
Space Communications and Data Systems
Manager
Space Operations Mission Directorate

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 4 of 95

4

STRS Architecture Description Document

Table of Contents

1 Executive Summary .. 9

2 Introduction... 12

2.1 Terminology.. 12
2.2 Architecture Development Process... 14

3 Scope... 19

4 Documents .. 20

4.1 Applicable Documents.. 20
4.2 Reference Documents ... 20
4.3 Background Documents.. 21

5 Architecture Description and Applications... 22

5.1 Mission Platform Classes.. 24
5.2 Radio Use Cases ... 26

6 Hardware Architecture Overview... 28

6.1 GPP and Operating Environment.. 28
6.2 Waveform Functional Allocation ... 29
6.3 Hardware Module Interfaces... 30

7 Software Architecture Overview .. 33

7.1 Waveform Application and Operating Environment .. 34
7.1.1 Operating Environment Components ... 35

7.2 Hardware Abstraction Layer... 36

8 Hardware Architecture.. 38

8.1 Module Type Specification... 40
8.1.1 General Processing Module (GPM).. 40
8.1.2 Signal Processing Module (SPM)... 40
8.1.3 Radio Frequency Module (RFM).. 41
8.1.4 Security Module (SEC)... 42
8.1.5 Networking Module .. 42
8.1.6 Optical Module (OM) ... 42

8.2 Example Hardware Architecture Partition.. 42
8.3 Hardware Interface Definition .. 44

8.3.1 Control and Data Interface.. 44
8.3.2 DC Power Interface... 44
8.3.3 Thermal and Mechanical Interface Definitions .. 45
8.3.4 Specialized Hardware Standardized Interface .. 45

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 5 of 95

5

9 Waveform and Applications ... 47
9.1 Waveform Abstraction.. 47
9.2 Waveform Implementation ... 49
9.3 Waveform Selection.. 49
9.4 Impact of Higher Frequencies and Data Rates ... 50

10 Software Architecture ... 52

10.1 Software Layer Interfaces ... 52
10.2 Infrastructure... 58

10.2.1 Application Programmer’s Interface (API) Development 60
10.3 Host Spacecraft Interface.. 63

10.3.1 Radio Telemetry.. 65
10.4 Portable Operating System Interface (POSIX) ... 66

10.4.1 STRS Application Environment Profile (AEP) .. 67
10.5 Network Stack... 69
10.6 Real Time Operating System (RTOS) .. 69

10.6.1 RTOS Introduction.. 69
10.6.2 RTOS Performance... 69
10.6.3 Safety and Security ... 70

10.7 Hardware Abstraction Layer... 70

11 Architecture Evaluation .. 73

11.1 Scalability ... 73
11.1.1 Infrastructure Scalability... 73

11.2 Leveraging STRS Radio Developments ... 73
11.3 Reliability and Availability... 74
11.4 Reconfigurability .. 74
11.5 Reprogrammability (Remote Waveform Upload) .. 75
11.6 Performance .. 75
11.7 Security ... 76

11.7.1 Type I Security.. 76
11.7.2 Type III Security ... 76

11.8 Networks ... 77
11.9 Custom Modules ... 77
11.10 Application Support .. 77
11.11 High Data Rate Waveforms and Hardware .. 78
11.12 Optical Communications .. 79

12 Acronyms.. 80

13 Glossary .. 84

14 Appendix A - Configuration File Formats.. 86

14.1 Platform Configuration Files .. 86
14.2 Waveform Configuration Files ... 88

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 6 of 95

6

15 Appendix B - POSIX API Profile... 89

--

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 7 of 95

7

STRS Architecture Description Document

List of Figures

Figure 5-1 STRS System Context Diagram.. 27
Figure 6-1 Hardware Architecture w/ Operating Environment Overlay 29
Figure 6-2 Waveform Application Added to Hardware Architecture .. 30
Figure 6-3 Module Interface Details... 31
Figure 7-1 SDR Processor Separation .. 33
Figure 7-2 Separation of Waveform Application from Operating Environment.......................... 35
Figure 7-3 Operating Environment Definition ... 36
Figure 8-1 Module Interface Details... 39
Figure 8-2 Example STRS Architecture Platform Functional Partitioning 43
Figure 9-1 Waveform Component Instantiation ... 49
Figure 10-1 STRS Software Execution Model ... 53
Figure 10-5 Profile Building Blocks... 68
Figure 10-6 Sample HAL On-line Documentation... 72
Figure 11-1 STRS with Type I Security Module.. 76

List of Tables

Table 5-1 Platform Class to Capability Mapping ... 25
Table 5-2 STRS System Actors .. 27
Table 10-1 STRS Software Component Descriptions .. 54
Table 10-3 Infrastructure Subsystem Descriptions... 59
Table 10-4 STRS System Management APIs... 61
Table 10-5 STRS Interprocess Communication APIs .. 62
Table 10-6 STRS Device Control Services .. 63
Table 10-7 STRS Radio Command Interfaces.. 65

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 8 of 95

8

STRS Architecture Description Document

Preface

This document represents an initial architecture definition for NASA space communication radio
transceivers. This architecture is under consideration as a required standard for communication
transceiver developments among NASA space missions. Although the architecture was defined
to optimize spacecraft resources for space-based platforms, the architecture may be applied to
ground station radios.

The STRS Architecture strives to provide commonality among NASA radio developments to
take full advantage of emerging software defined radio technology from mission to mission.
This architecture serves as an overall framework for the design, development, operation, and
upgrade of these software based radios.

This document is under the configuration management of the Glenn Research Center (GRC) at
Lewis Field. Change requests and comments to this document shall be submitted to the
contact below along with supportive material justifying the proposed change.

Questions and proposed changes concerning this document shall be addressed to:

STRS Architecture Manager
Communications Division
Glenn Research Center
Mail Stop 54-8
Cleveland, Ohio 44135

or email contact to:

STRS@lists.nasa.gov

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 9 of 95

9

1 Executive Summary

This document describes the architecture for software defined radios used by NASA for space
communications. Software-defined radios enable advanced operations and potentially reduce
mission costs for space platforms. Software defined radios are programmable systems with
partitioned software modules controlled by managing software that meets defined interfaces to
allow software portability and scalability across hardware platforms. Replacing fixed hardware
with flexible, reprogrammable software, offers the ability to change the radio operation by
changing only the radios’ software, opening a world of possibilities that was not previously
feasible. The advantages of flexible and adaptable operation in the digital domain offer
significant capabilities and performance compared to legacy radios. An open architecture
provides NASA a consistent, common radio framework to develop, qualify, operate and maintain
complex reconfigurable and reprogrammable radio systems for space.

A software defined radio is a collection of hardware and software technologies that enable
reconfigurable system architectures for communication networks. Software defined radio has
the potential to save cost when building multi-mode, multi-band, multi-functional radio systems
that can be dynamically enhanced using software upgrades. As such, software defined radio can
be considered an enabling technology that is applicable across a wide range of missions.
Software defined radio enabled devices and equipment can be dynamically programmed in
software to reconfigure the characteristics of equipment. In other words, the same piece of
"hardware" can be modified to perform different functions at different times through
reprogrammable software modules reducing the total number radios required.

The Space Telecommunications Radio System (STRS) encompasses a systems approach and
philosophy to develop, operate, and maintain reprogrammable space assets. STRS consists of an
open architecture definition applicable to NASA space communication and navigation radios;
recommends a common development process; conducts certification and compliance testing of
waveform applications and operating environment software; provides acquisition guidance for
radio developments; and promotes software reuse through a waveform repository.

This STRS open architecture specification provides a framework to develop, test and maintain
space radios. It divides the radio into hardware and software functional components to promote
modularity. The specification defines each components functionality, interface, and operation.
The architecture details the process for developing STRS compliant waveform applications and
infrastructure software. The architecture specification provides high level guidance for radio
developments applicable across different missions and mission classes. Specific radio
implementations are left to the individual missions and radio designers. Mission and radio
designers apply the architecture to their individual requirements, select required technology and
build, qualify, and operate the radios. The radio developers provide lessons learned back to the
architecture process to evolve the architecture with changing mission needs and technology
advancements.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 10 of 95

10

The STRS architecture describes the radio hardware in a modular fashion. The architecture
describes a series of hardware modules that can be combined as necessary to produce a radio to
meet mission requirements. Each of these modules is described at a higher level, with the
functional attributes and interfaces defined for each component module. The types of modules
specified include processing modules, radio frequency modules, security modules, and external
interfaces with either radio equipment or the spacecraft bus. This approach to the hardware
architecture does not specify a physical implementation, nor does it mandate the standards or
ratings of the hardware used to construct the radios. The architecture approach allows the
adoption of different implementation standards for various mission classes.

A STRS waveform is a re-useable, portable, executable software application that is abstracted
from the radio platform. A waveform comprises the end to end functionality (e.g. modulation,
coding, frequency conversion, filtering) from the data input to the radiated signal and from the
received signal to the data output. The STRS architecture specification defines the functionality
and interfaces between the waveform application and the radio system.

STRS waveform applications use radio services in the form of specifically defined application
programmer interfaces defined by the architecture. The STRS specification will make use of
industry standard (e.g. POSIX) APIs, augmented with specialized programming interfaces that
are unique to the STRS architecture. Waveform developer’s can take advantage of the APIs by
making use of its functionality, saving them the task of programming everything from scratch.
This approach enables waveform portability by using platform services standardized by the
architecture. The platform services are designed to reduce the time to port waveforms from one
platform to another since the same set of interfaces and services are provided by each platform.
The architecture promotes code reuse during waveform application development by providing a
library of compliant, reusable software routines.

A library will be developed as part of the STRS architecture to serve as a repository for archiving
the waveforms. Any documentation and artifacts supporting the waveform application,
including source code, models and algorithms and process flow diagrams will be an integral part
of the library. The STRS architecture will provide guidance as model based design extends to
space based radios as modeling technology matures. These models, which will also be stored in
the library, provide implementation independent algorithms which can be used among different
missions and mission classes. This allows not only code reuse but a more abstract view of the
waveform algorithms allowing better design reuse to further reduce development and testing
cost. Other items stored in the library and administered by the architecture include the
certification tools and software routines which insure compliance of different radio
implementations and waveform developments against the STRS architecture specification.

The role of the architecture team is to provide an Agency wide management of the architecture
and to maintain the specification over time. NASA will support and maintain the architecture
specifications and the application programmer interfaces that are standardized between the
waveform application and the radio software infrastructure that supports the required services to

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 11 of 95

11

run the waveform application. The architecture team verifies that platform and waveforms
comply with the architecture and certify the modules submitted to the library for future reuse.
The team maintains the architecture so that it applies to all mission classes and recommends and
provides technologies that apply across the mission Directorate’s. The architecture will evolve
through appropriate change process and controls to ensure that the architecture continues to meet
evolving mission needs and allows mission to infuse new technology.

Individual missions will apply the STRS architecture to meet specific requirements and radio
development needs. Mission designers will determine the implementation approach for a
particular platform by specifying the particular type of radio required, with the set of features and
operating functions needed to accomplish the mission. The missions will tailor the architecture
for the specific radio use and implementation while remaining compliant with the architecture.
The library of hardware and software modules provides mission designers a starting point for
both waveform applications and radio development. Designers can adapt modules used from the
library to meet individual requirements and needs. Designers will provide valuable feedback to
the architecture team to improve the architecture definition and adapt to future requirements and
available technology.

Communication radio providers within the space products industry will develop architecture
compliant radios to meet architecture & mission requirements through traditional acquisition
procedures. The STRS architecture will provide guidance on procuring hardware and software
modules which may be reused and intended for the repository to be available to other subsequent
missions and development efforts. The repository offers an opportunity to reduce develop costs
by allowing developers to reuse existing hardware and software from NASA’s STRS repository
(utilizing elements of compliant designs over multiple missions to reduce radio costs).
Appropriate controls within the repository operations will protect company proprietary
implementation designs. The architectures published interfaces and requirements for developers
to release certain interfaces after development help standardize functions & interfaces to promote
vendor independence in subsequent software modifications or additions after delivery.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 12 of 95

12

2 Introduction

Defining an open architecture specification for NASA space radios is part of the larger Space
Telecommunications Radio System (STRS) program currently underway to define NASA’s
application of software defined, reconfigurable technology to meet future space communications
and navigation system needs. Software-based reconfigurable transceivers (RTs) and software
defined radios (SDRs) enable advanced operations potentially reducing mission life cycle costs
for space platforms. The objective of the open architecture for NASA space SDRs is to provide
a consistent and extensible environment on which to construct and operate NASA waveforms for
space applications, targeting radio designers and developers. The open architecture provides a
framework for developing the radios and leveraging earlier efforts by reusing various
components of the architecture developed in other NASA programs.

SDR technology allows space-based radios to be reconfigured to communicate with different
stations without the necessity for including multiple radios for each communication end point
desired. This is inherently one of the biggest advantages of using SDR over conventional
hardware radios. Reconfigurable, software defined radios enable radio count reduction which
reduces mass and power resources, helping to offset any increase brought about by adhering to a
common architecture.

The goal for the open architecture definition is to provide improvements in capability through
this common standard across NASA missions and services. An open architecture enables cost
reduction in system development and operations by promoting and enabling multiple vendor
solutions and interoperability between independent hardware and software technologies. The
architecture supports existing (e.g. legacy) communications needs and capabilities, while
providing a path to more capable, advanced waveform development and mission concepts. The
architecture provides an effective approach to design and utilize communications systems; the
radios implemented are designed, managed and operated through the adoption of common
standards.

A key concept enabled by the architecture specification is reuse of previously developed
hardware and software components. The ability to reuse components is accomplished by
defining the various hardware and software interfaces, and providing additional layers to the
architecture to abstract the software from the platform hardware . By consistently specifying
these interfaces and publishing them as part of the architecture specification, the various modules
can be replaced and updated with a minimum amount of changes, since the interface is specified
and rules are provided for each component.

2.1 Terminology

Software defined radio area is a relatively new technology area, and industry consensus on
terminology is not always consistent. Some of the confusion exists when the various

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 13 of 95

13

organizations and standards bodies define different radio terms associated with the actual amount
of reconfigurability of the radio. Since the radios require at least some dedicated hardware to
compliment the software, the reality of today’s radios is varying degrees of reconfigurability
based upon the signal processing requirements and the choice of hardware components.
Definitions associated with software defined radios range from legacy transceivers with analog
processing to the ideal software radio that digitizes the RF signal at the antenna and has all
processing done in software. For purposes of the STRS architecture and architecture
specification, the following terms are defined.

A conventional radio is defined as having one fixed configuration for producing waveforms.
The radio may have limited options for tuning, data rate, etc. or may even carry multiple types of
data, but is incapable of adapting new waveforms. The software and hardware for this radio is
optimized towards achieving the explicit mission requirements. Reconfigurable transceiver is
defined as a radio with limited processing and selectable remote reconfiguration, which reflects
closer to the state of art for current reprogrammable NASA radios. A software defined radio1
system is a radio communication system which uses software for the modulation and
demodulation of radio signals. An SDR performs significant amounts of signal processing in a
general purpose computer, or a reconfigurable piece of digital electronics. Given the constraints
of today's technology, there is still some RF hardware involved, but the idea is to get the
software as close to the antenna as is feasible. A software radio is an extension of a software
defined radio with more functionality implemented in general purpose processors as opposed to
ASIC’s and FPGAs2. A software radio could be defined as the ultimate software defined radio,
digitizing the RF signal at the antenna terminals, may be an ideal never reached.

The architecture subject also has specific terminology definitions. System architecture is defined
as an abstract description of the entities of a system, and the relationship between the entities3.
The definition of software defined radio architecture is: …a comprehensive, consistent set of
functions, components, and design rules according to which radio communications systems may
be organized, designed, constructed, deployed, operated and evolved over time. A useful
architecture partitions functions and components such that a) functions are assigned to
components clearly and b) physical interfaces among components correspond to logical
interfaces among functions. 4 An architecture is open when functions, interfaces, components,
and/or design rules are defined and published.5 An open system6 has characteristics that comply
with specified, publicly maintained, readily available standards.7 Open systems architecture is
non-proprietary.

1 http://en.wikipedia.org/wiki/Software_defined_radio
2 http://en.wikipedia.org/wiki/Cognitive_radio
3 The Influence of Architecture in Engineering Systems, MIT Engineering Systems Monograph, March 29-31, 2004.
4 Software Radio Architecture, Object-Oriented Approaches to Wireless Systems Engineering, Joseph Mitola, 2000
5 JTRS Operational Requirements Document
6 ibid
7 ibid

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 14 of 95

14

A key attribute of an open architecture is the layered hierarchical structure, configuration, or
model.8 This hierarchical structure enables system description, design, development,
installation, operation, improvement, and maintenance to be performed at a given layer or layers.
Each layer provides a set of accessible functions that can be controlled and used by the functions
in the layer above it, enables each layer to be implemented without affecting implementation of
other layers. This allows alteration of system performance by the modification of only one layer
at a time without altering the existing equipment, software, or protocols at the existing layers.

The architecture terms defined above are general, and there are more specific definitions for the
software defined radio case. Reconfigurability is the ability to modify functionality on a radio
entirely or in part. An application is an executable software program that may contain one or
more modules. The executable software exhibits pre-determined functionality, and a primary
example is the waveform application. A STRS waveform is a re-useable, portable, executable
software application that is abstracted from the radio platform. A waveform comprises the end
to end functionality (e.g. modulation, coding, frequency conversion, filtering) from the data input
to the radiated signal and from the received signal to the data output. Services are software
programs running on the software radio that provide functionality available for use by the
applications. An application program interface (API) is a formalized set of software calls and
routines that can be referenced by an application program in order to access supporting system or
network services.

2.2 Architecture Development Process

The approach to developing the architecture involved several steps. The first step of the
architecture derivation required analyzing current mission concepts and anticipated mission and
operational requirements. Use cases were developed which specify an abstraction of a required
function of the radio system (e.g., radio power on, waveform upload). Once the requirements
were understood, the process of decomposing the functions of the communications system into
lower level subfunctions was conducted. The decomposition process continued with the
abstraction of the functional and physical components into individual standalone subsystems
capable of performing the subfunctions. Once this was completed for the entire system, the
functionality and interfaces of each lower level architecture components were derived.

The architecture effort defined the components and rule set framework for both the software and
hardware architectures. A standard process was identified to develop applications (e.g.
waveforms) for SDR to take advantage of the open architecture to realize benefits (e.g.
portability, scalability, etc.). The final step of the architecture development is to demonstrate the
architecture, and evaluate the reconfigurability, portability concepts and operation, through a
reference implementation. Feedback will continue to be incorporated into the architecture as it is
applied for architecture compliant radios. Once developed, the architecture is not a static
reference, but rather a dynamic structure and concept that will be updated as required. The
architecture serves as more than a design, development and operation template, but provides a

8 The Influence of Architecture in Engineering Systems, MIT Engineering Systems Monograph, March 29-31, 2004.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 15 of 95

15

framework to determine evaluation criteria to characterize the radio functionality to assess
performance and feasibility. This allows metrics to be developed to help evaluate the various
tradeoffs.

The requirements for an open architecture for NASA space communications were derived and
grouped into three major areas. The first area derived the requirements from an agency
perspective, which included the overall programmatic goals. The next area included
requirements from the mission level perspective, as the users of the architecture. Another area
consisted of requirements from the operational perspective, which gives insight on how the
radios will be operated and provide communication capability over time. Finally, the perspective
of the radio platform and waveform application suppliers was also considered to align with
commercial trends.

NASA programmatic requirements have a perspective that spans multiple missions, and
addresses the deployment of these radios over the operational lifetime, which spans from 2012 to
2030. The architecture strives to adapt to evolving requirements and accommodate technology
advances through 2030. The goals of the architecture are to lower agency-level cost across all
missions, through faster development from mission requirements determination through flight
hardware delivery and the use of non-proprietary designs, developments and operation. The
architecture should accommodate interoperability with other national assets.

Mission requirements address how the various mission classes are expected to use the
architecture. The architecture is designed to scale to both large and small mission classes,
independent of the actual implementation. It is adaptable or configurable to span the range of
operational requirements for space environments ranging from low earth orbit to deep space.
The architecture enables over-the-air interoperability with select legacy approaches and systems.
The mission requirements address the form and capabilities of the various radios at a functional
level, for software and hardware reconfigurablity. This provides the capability to change
operation for multiple mission requirements, or accommodate new requirements that occur from
pre-launch checkout and integration through intended and originally unanticipated operation.

The requirements generation process also examined the operational aspects of space radio use.
A key requirement addressed scalability, since the radios will be implemented to meet a range of
requirements, trading functionality against size, weight and power (i.e. user burden). The
architecture enables scaleable transparent dynamic networking and network services, either
internal to an individual spacecraft or external network. The requirements addressed
reconfigurability, enabling incremental uploads at either the module or shared library level of
both software and firmware. This requirement provides the flexibility for new software uploads
ranging from simple patches through complete image replacements. The architecture enables
fully autonomous operations, if its software/firmware load is capable of such operations.

The agency, mission and operational requirements were analyzed for specific architecture
requirements. These requirements are higher level functional requirements, addressing system
level attributes of the architecture. The architecture was designed to be open, through published
interfaces and description of allowable operations and information exchanged among

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 16 of 95

16

components across the defined interfaces. An open systems architecture (interfaces, buses,
software, protocols, etc.) facilitates interoperability among different developers. Open
architectures minimize the operational impact of upgrading hardware and software components.
The allowable operations constitute the set of rules and guidelines defined in the architecture for
operation across the architecture layers for both hardware and software.

After the requirements were generated, the use cases were formulated. The use cases organize
the functional requirements, by deriving the interactions between the system and the external
interactions. They are written in a sequence of numbered steps, and detail a complete course of
action towards a specific goal. The main flow of events is defined, along with any possible
exceptions that require an alternate course of action. Use cases were developed for the key
operations of the software defined radios. The use cases range from operations such as power on,
waveform instantiation and fault management, to reconfiguration cases ranging from waveform
parameter changes to complete new waveform upload.

From the requirements and use case generation, the higher level requirements were broken down
into independent manageable pieces or modules. The components and structures of waveform
applications were identified, as well as the radio platform and software infrastructure. The
mechanisms to isolate software from hardware (i.e. interfaces) were defined, which allow
portability of the waveform application from the radio infrastructure and platform. An example
of software abstraction occurs between the waveform application and the radio operating system
which runs this application.

The software architecture provides a framework for the resulting software components. The
architecture describes the functions of each software component, the interfaces between
components, and the services used to communicate with the underlying hardware. The layer
between the waveform application and the operating environment is a key concept to STRS
architecture. This development of this layer required a careful balance to keep the operating
environment from overwhelming the processing requirements of the radio, especially for the
space environment. A focus on minimizing the required resources of the operating environment
(e.g. power, mass) for the constrained space case is important, as the radiation hardened
electronics used in the radios lag at least a generation or two in processing capability from
commercial equivalents. The approach to providing the abstraction was to identify the core
interfaces to provide application software (e.g. waveforms) development flexibility and
portability by standardizing the interface provided by the radio processing platform through
standard services.

The services were defined through non-proprietary open standards, with application
programming interfaces (APIs) to enable software reuse and portability. The APIs are defined in
this architecture through a Portability Operating System Interface (POSIX) subset, combined
with a library of STRS specific APIs. The choice of the POSIX was made since it is an accepted
IEEE group standard that that promotes portability. The STRS architecture specification defines
a minimum POSIX application environment profile (AEP) for the allowed operating system (OS)
services. This layer can either consist of a conformant POSIX real time operating system
(RTOS), or by a POSIX AEP Abstraction in conjunction with a non-compliant RTOS. In

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 17 of 95

17

addition to this POSIX subset, the infrastructure provides APIs, which are not provided by
POSIX. The categories of STRS APIs include system management, interprocess
communications, device control, and telemetry and control.

The architecture provides software components and rule set (i.e. allowable operations) for
software execution and interaction. The STRS open architecture has published design rules
enabling developers to produce software products compliant with the standard. This allows
competition among different vendors developing the waveform application independent of the
hardware platform integrated with the operating environment. It does not, however, eliminate
proprietary implementations of specific modules and functions which comply with the standard.

Taking advantage of the latest advances in processing hardware speeds is an important feature of
this open software architecture approach. The infrastructure not only interfaces with the
waveform application, but also with the computing hardware. The infrastructure provides a path
to the hardware, so that that the waveform application sees an abstracted view of the hardware,
independent of the particular implementation. This is an important aspect for the STRS
architecture, since it is expected that due to the frequencies (>2 GHz) and anticipated growth in
data rates, signal processing will be performed in specialized devices (FPGAs, DSPs, and
ASICs). Rules addressing this abstraction to the specialized hardware are part of the architecture
specification.

The architecture defines both hardware and software aspects for the transceiver development.
The ability to describe hardware modules which have functionality and interfaces defined is an
important aspect of this architecture. This approach allows for the design of radios in a modular
fashion, with the flexibility to scale the hardware to meet specific mission requirements. The
architecture does not prescribe the particular implementation, but is the higher level framework
specifying functional attributes. For example, modules are defined, but the architecture does not
prescribe the specific bus structure that the radio will use, nor does it specify that the modules
need to be on separate printed circuit cards. The hardware architecture considers all the elements
envisioned to describe a radio, but allows the actual designers the flexibility to physically
construct a radio appropriate with the mission requirements.

The architecture presented in this document is the initial release, and provides an initial
description of the functionality and interfaces of the software defined radio system. The
architecture is not a static description, but instead provides a framework that will evolve over
time as technologies mature. The goal for this radio architecture is to present the functional
elements, defined interfaces and organizational rules. However, several activities may lead to
revisions to the architecture specification. A reference implementation is being developed to
characterize the high level functionality of the architecture, through an initial hardware platform
integrated with architecture compliant infrastructure software and representative waveform
applications. After completion of the activity, it is expected that the lessons learned will provide
additional details that will be incorporated into the architecture specification. The design,
development and operation of architecture compliant flight radios from the mission designers are
also expected to influence the architecture.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 18 of 95

18

As part of the architecting process, tradeoffs have been identified between desirable properties
for the short term versus desirable life-cycle properties. An example of a higher level trade is
examining the boundary between open architecture and radio implementation. This is an
important trade, since specifying implementation details as opposed to architecture will limit
innovative design and technology infusion limiting the usefulness of the architecture. Since the
technology does not exist to develop space radios that can completely cover the full range of
available frequencies, defining the architecture with specifics associated with the current state of
art might be a valid approach. However, this approach would require complete changes to the
architecture specification for minor technology changes at the hardware level. Other trades
studies underway include architecture complexity ,intellectual property boundary within the
radio and architecture and the appropriate set of APIs to maximize waveform portability, but
minimize resources. Finally, it is expected that new technologies will evolve and be added over
time, which may require corresponding changes to the architecture as a result.

The STRS architecture provides for verification and compliance testing through standard
processes and procedures. As the architecture matures, compliance testing and architecture
verification techniques will be developed and integrated into the program.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 19 of 95

19

3 Scope

This specification is divided into several different sections, organized by different aspects of
reconfigurable transceiver and software defined radio architecture specification.

Section 1 provides the executive summary highlighting the requirements and characteristics
associated with an open architecture using SDR technologies for NASA space missions.
Sections 2 and 3 introduce the purpose of this report and the scope of materials contained within
the architecture definition. Section 4 lists the applicable documents, which is an important
section, since a number of documents are assumed as background material. The documents
referenced in Section 4 include NASA communications requirements, applicable JTRS
documents, and internally generated documents that are required to design, develop, implement,
and utilize an open architecture approach.

The STRS architecture development concepts are introduced in the next three sections. The
concept of a layered architecture is a key concept, which is overviewed in Section 5. The main
focus of Section 5 is the system aspects, with a detailed description of each layer. In addition,
the aspects of the architecture are described, including the waveform, the testing, and operational
concepts. With the open architecture concept defined, Sections 6, and 7 focus on the
introducing the hardware and software architecture, respectively.

The specifics details of the hardware architecture are described in Section 8. Section 9
describes the waveform application. The software architecture details are described in Section
10. The various types of software components are described with a description of the
Application Programmer’s Interface (API) development. Section 11 briefly looks at how the
defined architecture addresses the high level guidelines and requirements (e.g. the “ilities”).

Several appendices are provided. A list of acronyms is presented in Section 12. A glossary of
terms is included in Section 13. Appendix A introduces examples of platform and waveform
configuration files, necessary for waveform execution and platform initialization. Finally
Appendix B provides a list of the POSIX profile recommended as part of the waveform
abstraction.

The STRS API descriptions and definitions, which are described at the general level in Section
10, are detailed in an accompanying document.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 20 of 95

20

4 Documents

4.1 Applicable Documents

(1) Space Telecommunications Radio System (STRS) Architecture Requirements
Document, May 2005.

(2) Space Telecommunications Radio System Application Programming Interface

Descriptions, December 2005.

(3) ISO/IEC 9945:1998 (POSIX:1 Application Program Interface, IEEE Std 1003.13-1998
http://standards.ieee.org/reading/ieee/std_public/description/posix/1003.9-
1998_desc.html

(4) POSIX 1003.13 Standardized Application Environment Profile – POSIX Real-time

Application Support (AEP)
http://standards.ieee.org/reading/ieee/ std_public/description/posix/1003.13-1998

4.2 Reference Documents

(1) Software Communications Architecture Version 2.2
http://jtrs.army.mil/pages/sections/technicalinformation/fset_technical_sca.html

(2) JTRS Technical Laboratory (JTeL) reference documents and work products
https://jtel.spawar.navy.mil/products.asp

(3) CCSDS 401-B CCSDS, Recommendations for Space Data System Standards,

Radio Frequency and Modulation Systems Part I – Earth Stations and Spacecraft
http://public.ccsds.org/publications/archive/401x0b10.pdf

(4) CCSDS 701.0-B-2 CCSDS Recommendation for Space Data Systems Standards,

Advanced Orbiting Systems, Network Data Links: Architectural Specification
http://www.ccsds.org/documents/701x0b3.pdf

(5) CCSDS 411.0-G-3 Consultative Committee for Space Data Systems, Radio Frequency

and Modulation Systems Part 1 Earth Stations
http://public.ccsds.org/publications/archive/411x0g3.pdf

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 21 of 95

21

4.3 Background Documents

(1) Model Driven Architecture, MDA Drafting Group, OMG Architecture Board
ORMSC1, July 9, 2001

(2) OMG Document formal/00-11-01, Interoperable Naming Service Specification

(3) OMG Document formal/01-03-01, EventService, V1.1

(4) OMG Document formal/01-03-02 EventService IDL, V

(5) FIPS PUB 140-2 Security Requirements for Cryptographic Modules

http://csrc.nist.gov/cryptval/140-2.htm

(6) JPL D-8671: Reliability Assurance Requirements

(7) JPL D-560: JPL Standard for System Safety

(8) JPL D-17868: Design, Verification/Validation and Operations Principles for Flight

Systems

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 22 of 95

22

5 Architecture Description and Applications

This section describes the major aspects and components of the STRS architecture. Within the
STRS project is the architecture specification and the definition of the support tasks required for
a successful implementation. The STRS architecture consists of both a software architecture and
hardware architecture specification. The architecture defines the functionality and the
component interfaces required to build a software defined radio. In addition, the architecture
details the process for developing STRS compliant waveform applications and operating
environment software. Support activities include a waveform library, testing and certification
tools for the waveforms and infrastructure, and a testing methodology. The architecture
specification describes roles for the mission users and developers to utilize and maintain the
architecture. Typical missions or mission characteristics are divided among mission classes to
describe implementations and provide an acquisition strategy across the class for cost savings.

The STRS hardware architecture describes the radio hardware in a modular fashion. The
architecture describes a series of hardware modules that can be combined as necessary to
produce a radio to meet mission requirements. Each of these modules is described at a higher
level, with the functional attributes and interfaces defined for each component module. The
types of modules specified include processing modules, radio frequency modules, security
modules, and external interfaces with either radio equipment or the spacecraft bus. This
approach to the hardware architecture does not specify a physical implementation, nor does it
mandate the standards or ratings of the hardware used to construct the radios. For example, it
does not mandate the bus construction or the radiation tolerance required of the electronic
components. It is expected that this architecture approach is flexible enough to allow the
adoption of different implementation standards for various mission classes. Thus, specifying a
particular bus chassis or card slice can be delegated to part of the acquisition strategy, where it
may be cost effective to define modularity at a lower level that matches the life cycle of the
hardware produced to common needs and requirements for that particular mission class.

Accompanying the hardware architecture is the specification of the software architecture.
The software architecture serves as the framework for software components, describing the
functions of each component. It also describes the services used for software components to
communicate with the underlying hardware, along with defining the interfaces between each
component. A set of rules accompanies the software architecture specification. In the STRS
open architecture, the software architecture specification is both defined and published. The
specification includes detailed descriptions of each component contained in subsequent sections.

A major aspect of the STRS architecture specification is the definition of the functionality and
interfaces to the waveform application. A STRS waveform is similar to a SCA waveform that is
implemented as “…a re-useable, portable, executable software application that is independent of
the [radio] system operating system, middleware, and hardware.” A waveform comprises the
end to end functionality encompassing “the entire set of radio functions that occur from the user
input to the RF output and vice versa. There are two key differences, however between current
STRS definition and the SCA. The STRS architecture has a smaller footprint since it does not

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 23 of 95

23

support the dynamic assembly of waveform components. That is, the allocation of the
components is defined when the waveform is built, not when the waveform is deployed. Space
mission scenarios require rigorous testing of the software with identical hardware on the ground
in a static configuration before they are deployed, for validation. This does not preclude
uploading new waveforms, but they are developed and compiled on the ground for the exact
target platform. The current SCA requires considerable memory footprint to enable this dynamic
configuration, which is a premium for radiation hardened electronics. In the second difference,
the STRS waveform application uses the services in the form of specifically defined Application
Programmer Interfaces (APIs) provided by the architecture. This approach will provide
portability for the waveform, since the services have been standardized by the architecture. The
standard services are designed to reduce the time to port waveforms from one platform to
another since the same set of interfaces and services are provided by each platform. Also, code
reuse is enabled during waveform application development by providing a library of reusable
software routines, each compliant with the architecture. Waveform developer’s can take
advantage of the API by making use of its functionality, saving them the task of programming
everything from scratch. The STRS specification will make use of industry standards (POSIX)
APIs, augmented with specialized APIs that are unique to the STRS architecture. STRS will
continue to work with the SCA community to leverage each others approach. APIs and services
developed under early Clusters of the SCA are beginning to emerge and will be reviewed for
applicability to STRS.

One of the major goals of the software architecture is to enable software portability and
waveform abstraction while minimizing required resources (e.g. power, mass) for the constrained
space case. Abstraction is provided by identifying the interfaces (e.g. application programming
interfaces) between software layers. Software layers are independent software functions which
enable developers to affect certain functions without affecting others. The waveform abstraction
provides application software development flexibility and portability. Within STRS, the services
to the waveforms are provided by two adjoining layers of the infrastructure. The STRS
architecture specification defines a minimum POSIX application environment profile (AEP) for
the allowed operating system (OS) services. This layer can either consist of a compliant POSIX
RTOS, or by a POSIX AEP Abstraction in conjunction with a non-compliant RTOS. In addition
to this POSIX subset, the infrastructure provides APIs that are more infrastructure specific, and
not provided by POSIX.

The infrastructure not only interfaces with the waveform application, but also with the
computing hardware. The infrastructure provides a path to the hardware, so that that the
waveform application sees an abstracted view of the hardware, independent of the particular
implementation. This is an important aspect for the STRS architecture, since it is expected that
due to the frequencies (>2 GHz) and anticipated growth in data rates, signal processing will be
performed in specialized devices (FPGAs, DSPs, and ASICs). Rules addressing this abstraction
to the specialized hardware are part of the architecture specification.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 24 of 95

24

The architecture includes the concept of a waveform library that will serve as a repository for
archiving the waveforms. For each waveform application, the developer shall submit the source
code, models and algorithms and process flow diagrams along with all documentation and
artifacts supporting the waveform application. By having this information archived, it simplifies
the task of developing the next application. The repository enables the next developer to reuse
portions of the model or code as appropriate, for better design reuse to further reduce
development and testing cost.

The STRS architecture will provide guidance as model based design extends to space based
radios as modeling technology matures. These models, which will also be stored in the library,
provide implementation independent algorithms which can be used among different missions and
mission classes. This allows not only code reuse but a more abstract view of the waveform
algorithms. The models serve as a platform independent view of the signal processing
algorithms, which serve as the starting point for any future implementation specific applications.
While the path from simulations to actual code is not always straightforward, the STRS
architecture will provide guidance as a clearer path evolves.

Other waveform related items stored in the library and administered by the architecture include
the certification tools and software routines which insure compliance of different radio
implementations and waveform developments against the STRS architecture specification.
Standardized test tools provide a consistent means of testing, and will be available to the radio
and waveform developers. Similar to the reuse issue of the waveform applications, having the
software compliance programs archived provides a good starting point for future tools or
required modifications. The library serves as a means of insuring that all users have access to the
tools, and insures that the tools are kept up to date compliant with the architecture specification.

5.1 Mission Platform Classes

The STRS hardware and software platform provides components and interfaces required to
implement the application waveforms required for a specific mission. A STRS platform consists
of a complement of GPPs (General Purpose Processors), DSPs (Digital Signal Processors),
FPGAs, and ASICs, together with the appropriate RF components. There are five STRS
platform classes, identified as;

• Class L: Low intrinsic complexity and low data rate signals
• Class M1: Moderate complexity and medium data rate signals
• Class M2: Moderate complexity with at least one high-data-rate transmit signal
• Class H1: High functional complexity with mixture of low, medium, and high data

rate signals
• Class H2: Same characteristics as H1 with at least one ultra-high data rate transmit

signal
• Class Optical: TBD

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 25 of 95

25

A more detailed comparison of these platform classes is provided in Table 5-1.

Functional Capacity/Class Units L1 M1 M2 H1 H2
Receive
Maximum Number of Frequency Bands 1 2 2 4 4
Total Number of Signal Types 1 3 3 6 6
Maximum Simultaneous Channels 2 4 4 8 8
Maximum Signal Bandwidth MHz 1 10 10 50 50

Transmit
Maximum Number of Frequency Bands 1 2 2 4 4
Maximum Transmit Bandwidth MHz 4 20 100 100 600
Maximum Transmit Data Rate Mbps 2 20 100 100 1000
Transmit Power Level W 3 5 5 10 20

Coding
Convolutional X X X X
Turbo X X X X
Reed Solomon X X X X

Network
Low Rate Port X X X X X
IP Network Routing X X
High Rate Port X X X

Security
Command Authentication X X X X X
Transmit Encryption X X X
Network Security X X

Spacecraft Input/Output
RS422 X X
1553/1773 X X X X X
Ethernet X X X X X
Spacewire X X X
Firewire X X

Table 5-1 Platform Class to Capability Mapping

The mission platform profiles divide up the NASA space missions which have similar
communication requirement characteristics. These profiles and their associated parameters are
merely representative capability within each class to aid development of interface definitions.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 26 of 95

26

Missions with specific communications needs will specify the requirements and capability of the
radios they require. For example, a mission class may choose to standardize a detailed radio
hardware implementation using a specific computer bus for all satellites of a particular size using
the architecture specifications (both hardware and software).

5.2 Radio Use Cases
A prioritized use case list, taken from the SWRADIO, has been extended to model STRS
architecture. The SWRADIO Use Cases define the Radio Set as the system being analyzed, and
therefore did not discuss the internal characteristics of the radio. STRS Use Case decomposes to
internal components to view the interactions that lead to the definition of an API. The
prioritized list is as follows:

• Radio Initialization – No default waveform
• Radio Initialization – Default Waveform
• Radio Instantiation

o Type I BLACK Side
o Type I RED Side

• Waveform Configuration Change
• Waveform Upload
• Dynamic Waveform Adjustments
• Processor Computational and Memory Resource Sharing
• Fault Management
• Transmit/Receive Packet

Figure 5-1 is the context diagram that is used as a reference for generating the use case behavior.

The Use Cases and their associated sequence diagrams are provided in an accompanying
document.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 27 of 95

27

Figure 5-1 STRS System Context Diagram

The following table describes the actors found in the STRS System Context Diagram.

Table 5-2 STRS System Actors

Actor Description
Ground Station Forward and Return Terrestrial RF interface
Spacecraft Crosslink interface to other spacecraft
Payload On-board Data and Digital control interface
Radio Command Services Radio Service executing on GPP that can be customized on

mission by mission basis.
Waveform Waveform application executing on GPP. Can be developed

independently of platform implementation of the STRS API.
Services Service applications executing on GPP or other physical modules

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 28 of 95

28

6 Hardware Architecture Overview

This section introduces the hardware architecture, through the concept of reconfigurable
modules. The hardware architecture consists of modules with defined functionality, and key
interfaces which support the interactions. Below some of the key modules are introduced:

• General Processing Module (GPM) – Consists of the general purpose processor,
appropriate memory, spacecraft bus (e.g. MILSTD-1553), interconnection bus (e.g. PCI),
and the components to support the radio configuration.

• Signal Processing Module (SPM) –This module contains the implementations of the

signal processing used to handle the transformation of received digital signals into data
packets and/or the conversion of data packets into digital signals to be transmitted.
Components include ASIC’s, FPGA’s, DSP’s, memory, and connection fabric/bus (e.g.
PCI, flex-fabric)

• RF Module (RFM) – This module handles the RF functionality to provide the SPM with

the receive digital signal and transmit the output digital signal. Its associated components
include filters, RF switches, diplexer, LNAs, power amplifiers, and data converters. This
module handles the interfaces that control the final stage of transmission or first stage of
reception of the wireless signals, including antennas.

• Security Module (SEC) – though not directly identified in the generic hardware

diagram, a security module is also being proposed to allow STRS radios to support Type
I cryptographic messaging. The detail of this module are TBD.

• Network Module (NM) – The architecture supports Consultative Committee for Space

Data Systems (CCSDS) and Internet Protocols (IP) and networking functions.

• Optical Module (OM) - The detail of this module are TBD. (Many similarities to RFM,
but for optical carriers.)

• External Interfaces – consists of spacecraft bus and data interfaces along with other

interfaces used to process input and output data of the radio.

6.1 GPP and Operating Environment

Figure 6-1 below shows the main modules of the hardware architecture, interconnected for a
radio configuration. The modules used to construct the notional radio include General
Processing Modules, Signal Processing Modules, RF Modules, and External Interface Modules.
The diagram is notional, since the number of specific modules can be scaled to represent the
capabilities required by the particular implementation.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 29 of 95

29

This diagram illustrates the key functions and typical hardware elements on each of the modules.
For example, the operating environment is shown being executed by the General Purpose
Processor on the General Processing Module. The operating environment provides the
infrastructure, the RTOS, and the board support packages to aid the waveform abstraction from
the hardware. The signal processing module can be comprised of a combination of FPGAs,
DSP or even ASICs, for the higher speed processing that is typically used for reconfigurable
processing at higher frequencies and data rates. The RF module provides frequency conversion
from the baseband processing to the desired output and vice versa. The external interfaces
module will interconnect the command and data handling from the spacecraft bus with the radio.
Other modules such as security and optical modules are not shown in the diagram for clarity.

Figure 6-1 Hardware Architecture w/ Operating Environment Overlay

6.2 Waveform Functional Allocation

Unlike the operating environment, which runs solely in the general purpose processor, the
waveform developer has the option of allocating the waveform application to execute in any of
the various processing modules, or even distributing portions of the application in several of the
processors. The waveform developer can make this allocation choice depending upon the

text

General Purpose
Processor

DSP

FPGA

Signal Processing Module (SPM)

RAM

EEPROM

ASIC

FPGA

Tuner/Frequency
Control

RF Module (RFM)

Upconverter/
Downconverter

General Processing Module (GPM)

text

 General Purpose
Processor

RAM

EEPROM

PROM

 Memory
(SRAM, SDRAM)

Operating
Environment

ADC
DAC

Network
Interface

Bus Interface

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 30 of 95

30

waveform requirements and the capabilities of the platform where this application is run. In the
figure below, a waveform application is shown distributed between the general purpose
processor in the GPM and the ASIC, FPGA, and DSP in the SPM.

Figure 6-2 Waveform Application Added to Hardware Architecture

6.3 Hardware Module Interfaces

The figure below completes the representative integrated hardware / software architecture
depiction. This figure has the interface for each of the modules defined. It also has the
architecture more defined in the GPM, and shows the relationship between the GPM and the
SPM for access to the specialized processing elements.

text

General Purpose
Processor

DSP

FPGA

Signal Processing Module (SPM)

RAM

EEPROM

ASIC

FPGA

Tuner/Frequency
Control

RF Module (RFM)

Upconverter/
Downconverter

General Processing Module (GPM)

text

 General Purpose
Processor

RAM

EEPROM

PROM

 Memory
(SRAM, SDRAM)

Operating
Environment

Waveform

ADC
DAC

Network
Interface

Bus Interface

Waveform

Waveform

Waveform

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 31 of 95

31

Figure 6-3 Module Interface Details

The module interfaces (e.g SPM Interface, RFM Interface) shown in Figure 6-3 provide the
information necessary for 3rd party developers to use or develop compatible modules within an
STRS platform. These interfaces are referred to as the Hardware Interface Definition (HID) for
the particular module. The HID provides 3rd party developers the structure under which they can
develop new modules for a platform. The HID will specify bus configurations as well as GPIO
pin assignments for the backplane. The GPIO pin assignments will be allocated based on the
associated functionality. For example, a set of pin assignments may be dedicated to Channel-1
Receiver data stream. This distinction of functional data provides two benefits, 1) it provides a
set of distinct pins to the 3rd party developer which to provide the module functionality that
insures a mechanism for integration with the other modules in the system, and 2) provides
platform developers and system designers the ability to anticipate off-nominal conditions that
can be mitigated with the STRS infrastructure. An example for 2) is if a channel in the SPM
module fails, a waveform implementations that allows the channel to operate at a lower data rate
using the GPM for all signal processing could be developed and uploaded to the radio. Another

text

General Purpose
Processor

DSP

FPGA

Signal Processing Module (SPM)

RAM

EEPROM

ASIC

FPGA

SPM
Interface

SPM
Interface

RFM IF
Ext IF

SPM IF

GPM IF

RFM
Interface

Tuner/Frequency
Control

RF Module (RFM)

Upconverter/
Downconverter

General Processing Module (GPM)

text

 General Purpose
Processor

RAM

EEPROM

PROM

 Memory
(SRAM, SDRAM)

Operating
Environment

Waveform

HAL

API

ADC
DAC

Network
Interface

S/C Bus
Interface

textWaveform

textWaveform

textWaveform

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 32 of 95

32

use could be in isolating failures on a radio by allowing the GPM to monitor activity on the
signal lines to identify where a fault may exist.

The generic hardware architecture diagram identifies five main components or modules of the
STRS Hardware Architecture. An External Radio Equipment and Security Module are also
specified. The lines connecting the components of Figure 6-3 symbolize the hardware interfaces
that must be defined. These interface definitions are described later in this document.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 33 of 95

33

7 Software Architecture Overview

The following diagrams introduce the software architecture aspects of the STRS architecture.
The charts are developed in a progressive manner, adding details incrementally, until all the
elements of the software architecture are described. The basic premise of a reconfigurable
radio is the processing applications and underlying architecture execute on a combination of
general purpose processing hardware and specialized processing hardware which comprise the
radio platform.

Figure 7-1 introduces the concept of general purpose processing hardware which contains a
general purpose processor (GPP) along with supporting components such as memory. The
general processing hardware hosts the infrastructure, providing operational control and
management of the software radio platform. The specialized processing hardware shown on the
diagram consists of devices such as FPGAs and DSPs that are capable of high speed digital
signal processing.

Figure 7-1 SDR Processor Separation

Specialized Hardware

General Processing Hardware

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 34 of 95

34

7.1 Waveform Application and Operating Environment

The next diagram introduces the concept of layering as used in the architecture. The goal with
this architecture approach is to provide separation, so that each component could be replaced
separately. This requires defining the functionality of each layer, and specifying the interfaces
between each layer.

The waveform application is the code that implements all the functions and algorithms necessary
to realize an over the air voice or data signal. High level services provide the waveform
application run-time support for features not available in the infrastructure. The waveform
application utilizes the radio control and services implemented in the infrastructure. The
waveform application can be distributed upon various processing elements, including specialized
hardware (e.g., FPGA/DSPs). The waveform developer determines the allocation of algorithms
to processing elements based on performance requirements. For example, it is expected for
current reconfigurable applications a significant amount of the signal processing code will be
implemented in FPGAs, which are capable of processing higher data rates with better power
efficiently than an implementation in the GPP.

The first major interface of the STRS architecture separates the waveform application from the
operating environment. APIs specify the architectural interaction between these layers for
waveform portability. API is an acronym for application program interface, which is a set of
routines, protocols, and tools for building software applications. APIs makes it easier to develop
application programs by providing the building blocks to waveform application programmers to
facilitate waveform development. For example, most operating environments, such as MS-
Windows, provide an API so that programmers can write applications consistent with the
operating environment. The STRS API makes it easier to develop a program by providing a
library of robust, reusable functions and uniform interface to the STRS infrastructure for the
waveform application programmer. This makes it easier for the waveform developers to port the
applications, since the STRS architecture has specified a consistent set of APIs which are used
for all waveforms. STRS APIs provide a consistent interface for waveform and system
management, timing, and logical device control. The STRS API provides the interfaces that
allow applications to be instantiated and use platform services.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 35 of 95

35

Figure 7-2 Separation of Waveform Application from Operating Environment

The figure also illustrates the different types of APIs in the abstraction layer. The API layer
consists of a subset of industry standard IEEE POSIX, (Portable Operating System Interface),
augmented with unique STRS APIs to provide functionality and interfaces required for space
SDRs. POSIX is a well defined and accepted standard and implemented in many commercial off
the shelf (COTS) operating systems.

7.1.1 Operating Environment Components

The Operating Environment consists of three elements; 1) the Infrastructure, 2) a Real Time
Operating System (RTOS), and 3) a hardware abstraction layer. The STRS infrastructure is the
portion of the operating environment that implements the STRS APIs and supports system
management, device control, and data transfer type functions. The operating environment
leverages commercially available RTOS to implement POSIX API subset. The hardware
abstraction layer provides the board support package resources necessary to run a particular
RTOS on a specific hardware platform and the appropriate device drivers. The BSP contains
the boot and the generic and processor specific drivers required for the specific hardware.

Waveform Applications & High Level Services

Specialized Hardware
Waveform Component Waveform Component

Operating Environment

POSIX Subset API STRS API

Waveform Applications & High Level Services

Specialized Hardware
Waveform Component Waveform Component

Operating Environment

POSIX Subset API STRS API

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 36 of 95

36

Figure 7-3 Operating Environment Definition

The HAL is divided among the BSP device drivers, the published API layer to access the
hardware drivers, and a hardware interface definition (HID) released by the platform developer.
The BSP leverages commercial off the shelf (COTS) device drivers and other software necessary
for applications to access the specific hardware. The HID is not an actual layer in the software,
but a published specification by the platform developer to define memory addresses, offsets, size,
etc. It is not shown on the software architecture diagram, however the HID functionally resides
between the specialized hardware and the BSP.

7.2 Hardware Abstraction Layer

The completed diagram below is an illustration of the entire STRS architecture, as developed
above. The API layer promotes waveform portability by using a defined set. Requiring a
POSIX operating system leverages COTS standards to enhance portability. The flexible
infrastructure enables optimized implementations for resource constrained systems. The use of a
HAL promotes extensibility by adapting existing software and hardware for technology insertion
(infrastructure portability). By publishing the Hardware Interface Definition (HID) after the
platform has been constructed facilitates hardware technical insertion from multiple vendors.
The use of model- based design and a software library promotes portability of WF code across
platforms reducing cost. The next section of this STRS specification will describe each section
of the architecture in more detail.

STRS InfrastructureReal Time OS

Hardware Abstraction Layer

POSIX Subset API STRS API

Waveform Applications & High Level Services

Specialized Hardware
Waveform Component Waveform Component

STRS InfrastructureReal Time OS

Hardware Abstraction LayerHardware Abstraction Layer

POSIX Subset API STRS API

Waveform Applications & High Level Services

Specialized Hardware
Waveform Component Waveform Component

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 37 of 95

37

It’s expected that the RTOS vendor will work in conjunction with the platform provider to
develop the BSP, which has the function to bootstrap and effectively use the hardware. The
function of the HAL, which is a higher level abstraction, is to decouple the infrastructure from
the specialized hardware. The HAL will allow FPGA image files to be loaded on to FPGAs, and
allow communication between GPPs and FPGAs/DSPs. The HAL will have certain interfaces
likely be implemented as part of the STRS infrastructure, to facilitate the communication
between the waveform and the specialized hardware. The figure illustrates a slightly different
relationship between the RTOS and BSP, indicating the variability within the operating
environment for providers to optimize implementations, yet still comply with the architecture.

Figure 7-4 STRS Software Architecture Diagram

STRS InfrastructureReal Time OS

POSIX Subset API STRS API

Waveform Applications & High Level Services

Specialized Hardware
Waveform Component Waveform Component

Board Support Package

Hardware Abstraction Layer

Hardware Interface Definition

STRS InfrastructureReal Time OS

POSIX Subset API STRS API

Waveform Applications & High Level Services

Specialized Hardware
Waveform Component Waveform Component

Board Support PackageBoard Support Package

Hardware Abstraction Layer

Hardware Interface Definition

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 38 of 95

38

8 Hardware Architecture

The STRS hardware architecture was developed considering several constraints and conditions
for operating space SDRs. One major issue driving the hardware architecture formulation is the
need for flexibility, so that one architecture is capable of addressing the range of different
mission classes. The mission classes have radio requirements that range from requiring small
radios that are highly optimized to meet severe size, weight and power constraints, to missions
requiring complex radios with multiple operating frequencies and higher data rates. This
requires that the architecture accommodate a range of reconfigurable processing technologies
including general purpose processors, digital signal processors, field programmable date arrays
(FPGAs), and application specific integrated circuits (ASICS) with selectable parameters.
Currently reconfigurable signal processing is primarily performed in specialized signal
processing hardware for the frequencies and data rates used by NASA in space, and this is
expected to continue for some time. In addition to providing capability, specialized signal
processing is generally more power efficient than general purpose processing. The needs for
specialized processing are supplemented by the software infrastructure, which is more suited for
execution in a general purpose processor. Another requirement is that the architecture shall
enable technology infusion over time. This is a key point of the hardware architecture, since the
capabilities of the radios are rapidly evolving as the processor speeds and capabilities are
increasing. In addition the conversion point, where the radio signal is digitized, is moving closer
to the antenna. Considering these points, the architecture provides a flexible framework but does
not prescribe a specific hardware implementation approach.

The approach taken with the STRS is to describe the radio hardware architecture in a modular
fashion. The generic hardware architecture diagram identifies four main components or modules
of the STRS Hardware Architecture; which includes a general purpose processor module, a
specialized signal processing module, a radio frequency module, and a security module. The
radio developer has the flexibility to combine these modules as necessary during the radio design
process to meet the specific mission requirements. Additional modules can be added for
increased capability.

The hardware architecture describes the functional attributes and defines the interfaces of each
module. The hardware architecture does not specify a physical implementation internally on
each module, nor does it mandate the standards or ratings of the hardware used to construct the
radios. Thus the radio supplier can incorporate their company proprietary circuit or software
designs, as long as the modules meet the specific architecture rules and interfaces defined for
each module. The radio supplier shall publish a Hardware Interface Description (HID), which
defines the physical interfaces that allow third party hardware developers to integrate their
products with a specific STRS platform. The HID specifies the electrical interfaces, connector
requirements, and physical requirements for the delivered radio. Once the radio has been
procured, NASA has the knowledge to procure or produce new or additional modules using the
information from the HID. Each module’s HID abstracts and defines the module functionality
for data flow enabling multiple vendors to provide different modules or add modules to existing
radios.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 39 of 95

39

Section 5.1 identifies a set of candidate profiles designed to meet various NASA mission
requirements. This classification is not meant to infer that they are physically independent units.
For example, all RF and signal processing components (both GPM and SPM functions) may be
integrated onto a single printed circuit board easing footprint, interface, and integration issues.

This approach provides NASA with the flexibility to adopt different implementation standards
for various mission classes. Thus, if a series of radios are required with common operating
requirements, physical construction details such as bus chassis or card slice can be part of the
acquisition strategy, for cost effective modularity at a lower level to match the life cycle of the
hardware.

Figure 8-1 Module Interface Details

STRS Inter-module Interface Development Parameters:

 STRS backplane shall provide common data/address bus to all modules data and control
plane interfaces (This does not preclude other specialized module-to-module interfaces.)

 All external interfaces shall be fully disclosed for each module, as described in the
Hardware Interface Definition, later in this document.

 TBD

External Radio Equipment

text

General Purpose
Processor

DSP

FPGA

Signal Processing Module (SPM)

RAM

EEPROM

ASIC

FPGA

SPM
Interface

SPM
Interface

RFM IF
Ext IF

SPM IF

GPM IF

RFM
Interface

Tuner/Frequency
Control

RF Module (RFM)

Upconverter/
Downconverter

General Processing Module (GPM)

text

 General Purpose
Processor

RAM

EEPROM

PROM

 Memory
(SRAM, SDRAM)

Operating
Environment

Waveform

HAL

API

ADC
DAC

Network
Interface

Bus Interface

textWaveform

textWaveform

textWaveform

Antenna
Flight

Computer
(C&DH)

HDR
Source/Sink

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 40 of 95

40

8.1 Module Type Specification

8.1.1 General Processing Module (GPM)

The GPM consists of the general purpose processor (GPP) and the components to support the
configuration and control of the radio, including the waveform applications. Examples of the
components include static and dynamic memory, data storage, and bus control circuitry. This
module contains and executes the majority of the STRS architecture specific functionality. The
GPM also typically handles communications with the flight computer and other data sources on
the spacecraft. The type and number of the implemented interfaces is determined during the
mission planning phase for a spacecraft. Examples of these interfaces include MILSTD 1553A,
Spacewire, and RS422. Many STRS compliant radios will have multiple external interfaces to
support multiple data sources.

GPM Interface Development Parameters:

• An STRS radio set shall contain at least one GPM module.
• Provides programmable GPIO to support

o Interrupt source/sink
o Application data transfer

• Provides control/configuration interfaces
• Provides spacecraft bus interface
• The GPM configuration file shall describe the hardware environment for the STRS

architecture. It will identify the existence of the different hardware modules and their
associated configuration file that will allow the architecture to instantiate drivers and
test applications.

• TBD

8.1.2 Signal Processing Module (SPM)

The SPM implements the signal processing used to transform received digital signals into data
packets and/or the conversion of data packets into digital signals to transmit. This module is
optional based on the waveforms and data rates selected for a mission. The SPM modules
contain components and capabilities to manipulate and manage digital signals that require higher
processing capabilities than that supplied by the GPM. The SPM will rely on HAL drivers to
present consistent interfaces to the waveform applications in processing and distributing data.

The SPM is a scalable entity. It has capabilities to handle ranges of data rates implemented on
multiple classes of modules. As data rates increase, technologies involved migrate from
programmable DSPs and FPGAs towards the development of ASICs and custom logic with
corresponding reductions in programmability and flexibility.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 41 of 95

41

It is also anticipated that STRS radios can use dedicated SPM modules for specific waveforms
and technologies. For example, a dedicated GPS receiver module can complement the existence
of reconfigurable SPM modules in the same radio. The dedicated module offloads the GPM’s
involvement in configuration and computations. GPM modules are still required to meet the
interfaces specifications to allow for status and configuration.

SPM Module Interface Development Parameters:

• Integrates with GPM bus for
o FPGA/DSP program transfer (Waveform Instantiation)
o signal data transfer
o GPIO to generate and receive interrupts

• Direct IO for high rate mission data (bypass GPM)
• The SPM configuration file shall provide the STRS infrastructure with

information on what resources are provide by the module as well as the resources
that must exist on the GPM for access to the devices.

• TBD

8.1.3 Radio Frequency Module (RFM)

The RFM handles the conversion to and from carrier frequencies, providing the Signal
Processing Module with baseband or IF signals and the transmission and reception equipment
with RF signals. Its components currently include RF switches, diplexer, LNAs and power
amplifiers. Current and near term RF technologies cannot expect to solve for multi-band
operation using a single RFM module and thus multi-band radios will require the use of multiple
RFM modules. Each RFM provides a band of frequency tunability. For example, the NASA
TT&C band can be channelized with 0.5MHz tuning resolution with further resolution being
provided in the digital down converter (DDC) or programmable modulator functions. This
tunability can be software controlled through the provided interfaces.

The RF module handles the interfaces that control the final stage of transmission or first stage of
reception of the wireless signals, including antennas, steerable antennas, external power
amplifiers, diplexers, triplexers, RF Switches, etc. These external radio equipment components
would otherwise be integrated with the RFM except for the physical size and location constraints
for transmission and reception. The interfaces involved are primarily their associated control
interfaces. The RFM HID encompasses the control and interface mechanism to the external
components. The focus of the RF HID is to provide a standardized interface to the control of
each of these devices, to synchronize the operation of the radio with any of these devices.

RFM Module Interface Development Parameters:

• Provides read and write access to configuration registers
• Provides diagnostic test registers

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 42 of 95

42

• Provides I/O for exchanging digitized WF signal data
• TBD

8.1.4 Security Module (SEC)

Type I cryptography is a specification that provides requirements and behaviors for handling
distribution of classified material. It requires a distinct separation between the encrypted and
unencrypted data transfer bus. To achieve the Type I requirement, a separate security module, as
well as separate radio backplane must be developed.

Type III cryptographic messaging can be on a single CPU bus, but would still be required to
meet certification requirements from NIST. Thus, a separate Security Module and backplane
would not be required. The requirements for Type III are specified in the FIPS140-2
documentation.

SEC Module Interface Development Parameters:

• TBD

8.1.5 Networking Module

• TBD

8.1.6 Optical Module (OM)
TBD (Similar to RFM, but for optical carriers)

8.2 Example Hardware Architecture Partition

An example STRS Architecture partitioning is depicted in Figure 8-2. This STRS platform is
highly modular, consisting of one General Purpose Module, a Signal Processing Module capable
of simultaneously processing two received signals and three transmitted signals, an RF Module
with two receiver chains and three transmitter chains, together with the supporting power supply,
chassis, cabling, and power amplifiers. There are two separate S-Band receiver RF chains, for
simultaneous operation of two S-band waveforms such as TDRSS and space-space links.
Similarly, there are two separate S-Band transmitter chains, one for each S-band transmit
waveform, to enable simultaneous operation of these links. The third transmitter chain depicted
in Figure 8-2is an X-band transmitter for high-rate telemetry or mission data.

The SPM contains a signal processing ASIC, a high-density reprogrammable FPGA, a
programmable digital signal processor (DSP), and supporting RAM and EEPROM. The high-

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 43 of 95

43

performance programmable DSP on the SPM is available for low-rate waveforms, software-
controlled processing functions such as PLLs, and special-purpose applications such as FFTs.

The example STRS Platform supports an RFM with multiple transmitter and receiver chains, as
depicted in Figure 8-2. Each chain is specific to a particular frequency band. For example the
depiction in shows two S-band transmitter and receiver sub-assemblies, as well as a direct-
conversion X-band transmitter subassembly. Note that the RF module is further partitioned in
this figure to explicitly highlight the transmitter and receiver chains.

This figure also shows the module interfaces. Detailed specification of these interfaces (as
required by the hardware interface definition) ensures the open characteristic of the architecture
and provides a path for scalability and technology insertion (including performance and
component upgrades). The interfaces consist of both data- and control-plane constituents. The
control plane interfaces transport the signals for component configuration to support waveform
instantiation. The data-plane signals transport payload and telemetry and control data.

Figure 8-2 Example STRS Architecture Platform Functional Partitioning

15
53

/1
77

3

EthernetRFM Configuration

RFM – Transmitter-3

P
C

I

RFM – Receiver-2

RFIC

PLL
Synthesis

IC

Frequency
Reference
e.g., TCXO

LNA

RFM – Receiver-1

BPF
Vector

Modulator
IC

PLL
Synthesis

IC

Frequency
Reference

Control Port

LPF DAC

RFM – Transmitter-1

LPF DAC

 ADC

RFM – Transmitter-2

GPPRAM
EDAC

PROMEEPROM
w/EDAC

Ethernet
MAC/
PHY

Bus – I/O
Controller

GPM

S/C Bus
Transceiver
(1553/1773)

PCI

Ti
m

e/
Fr

eq
ue

nc
y

C
on

tro
l

U
pc

on
ve

rte
r I

nt
er

fa
ce

Quad
Digital
Down

Converter

Modulator
Baseband
Functions

4x
NCO

Frequency
Control

DSP
Time

Generation

SPM ASIC

RAM
EDAC

Configuration
Port

Rx
Buffer

Control
Interface

FPGA

SPM

EEPROM
w/EDAC

A
D

C
 In

te
rfa

ce

Micro-
Ctrlr
(opt)

D
ire

ct
 D

at
a

I/O

Gain
Control

TDRSS S-band
Space S-Band

TDRSS S-band
Space S-Band

X-Band

GAIN

GAIN

RFM Data / Control (Optional)

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 44 of 95

44

8.3 Hardware Interface Definition

The Hardware Interface Description (HID) defines the physical interfaces that allow third party
hardware developers to integrate their products with a specific STRS platform. NASA radios
built today are mostly proprietary “black boxes”. Hardware interface definitions will enable
hardware technology insertion and reuse, as opposed to building a totally new “box” for every
mission. Recognizing vendor market place realities, the specific radio hardware implementation
is intentionally left to the platform provider. With the HID approach a hardware provider
documents all of the necessary interfaces, but not necessarily all of each module’s inner
workings. In many ways this approach is similar to an IC manufacturer which provides a
datasheet with the interfaces defined necessary for an application. The IC user only knows the
functionality and performance of what’s inside, not necessarily the details of how it’s
implemented. Each STRS radio component or module will have a similar level of defined
interfaces. Specifically, when a vendor delivers a platform the hardware interfaces shall be
defined for the following areas: control and data, DC power, thermal/cooling, and
physical/mechanical. If a recognized industry standard is employed then only a reference need
be given. However, a non-standard interface must be described in detail to allow other vendors
to build a module that will operate within the platform.

Hardware Interface Description Parameters:

• HID shall be published for each module so 3rd party developers have the structure under
which they can develop new modules

• The HID will specify bus configurations and IO pin assignments for the backplane.
• TBD

8.3.1 Control and Data Interface

The control and data communications buses/links within the radio shall be defined by the
platform vendor as necessary to facilitate integration of another vendor’s module. If modules
communicate using IEEE-1394, for example, this shall be specified in the HID with appropriate
connector and pinout information. Any non-standard protocols used must also be specified
which in some cases may be handled by the software HAL. Platforms with a backplane
implementation shall have all signals defined, including unused pins if applicable.

8.3.2 DC Power Interface

The DC power interface definition for the radio has two parts; 1) the platform as a supplier to the
various modules, and 2) the power consumption of the different modules. Voltages, currents,
and connectors must be given for both the platform and the individual modules.9 Available

9 NOTE: some platforms may only have one module

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 45 of 95

45

current for each supplied voltage must be specified for the platform.10. Table 8-1 shows an
example listing of a platform DC power interface. Modules delivered with the radio, as well as
those built by other vendors, must specify the needed voltages, currents, and connections.
Voltages must be specified with a max/min tolerance, and associated currents must be specified
with nominal and maximum values. Connectors for DC power must be specified, including
pinouts. If power is routed through a multi-purpose connector, such as a backplane connector,
then the pins actually used shall be documented.

 Voltages Available
Parameter -15 V +2.5 V +5 V +15 V
Max. current/chassis 2 A 1.7 A 3 A 2 A
Max. current/slot 1 A 1 A 1 A 1 A
Backplane supply pins 17, 19 59, 61 44, 46, 48 21, 23
Backplane return pins 18, 20 60, 62 43, 45, 47 22, 24
Notes: Slot 1 & 2 only Slot 1 & 2 only

Table 8-1 Example – DC Power Interface (Platform Supplied)

8.3.3 Thermal and Mechanical Interface Definitions

The platform documentation shall describe conduction cooling paths, or specify air-flow
capabilities, depending on the intended operational environment. As with the DC Power
interface definitions, the thermal and mechanical interface definitions shall address both the
platform and module perspectives. Each platform chassis shall specify total heat dissipation
limits, and dissipation limits for individual module slots, as appropriate. For human spaceflight
environments, touch temperature requirements may limit dissipation further, and these reductions
shall be factored into the given dissipation limits. Each module shall specify its thermal cooling
requirements.

The platform provider shall specify the mechanical information required to build a module for
the platform. This includes all dimensions, mass, clearances, mounting method, and connector
locations. Module specifications shall include vibrational loading limitations.

8.3.4 Specialized Hardware Standardized Interface

This section addresses the need for formalizing the interface from the infrastructure to the
specialized processing hardware such as FPGAS or DSPs. Figure 8-3 depicts the high level
relationship example between a GPM, SPM, and RFM modules in a STRS radio. The
application in the GPM will use STRS device control APIs that interface to the device drivers
associated with the SPM and RFM modules. The device drivers communicate via the physical

10 NOTE: there may also be external power limitations from the spacecraft that are independent of the radio
platform.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 46 of 95

46

interface specification defined by the HID in transferring command and data information
between the modules. On the SPM, front end interfaces provide connection between the DSP and
FPGA components with the external HID. Likewise, an internal HID provides application
developers with the capability to exchange data between components on the SPM. For modules
such as the RFM, these interfaces can be a memory mapped registers, serial, parallel, and GPIO.

E
X
T
E
R
N
A
L

H
I
D

Custom Source

FPGA

DSP

SPM

SPM
IO

Custom Logic

DSP

FPGAGPM
IF SPM

IO

RFM
IF

I
N
T
E
R
N
A
L

H
I
D

Ext.
IO

GPM
IF

RFM
IF

Ext.
IO

App
FPGA

Drv

DSP
Drv

GPM

Device
Driver
API

RFM

RFM
Drv

RFM
Interface

Tuner/Frequency
Control

ADC

DAC

E
X
T
E
R
N
A
L

H
I
D

Custom Source

FPGA

DSP

SPM

SPM
IO

Custom Logic

DSP

FPGAGPM
IF SPM

IO

RFM
IF

I
N
T
E
R
N
A
L

H
I
D

Ext.
IO

GPM
IF

RFM
IF

Ext.
IO

App
FPGA

Drv

DSP
Drv

GPM

Device
Driver
API

RFM

RFM
Drv

RFM
Interface

Tuner/Frequency
Control

ADC

DAC

Figure 8-3 Detailed HAL Diagram

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 47 of 95

47

9 Waveform and Applications

A waveform is defined as the entire set of radio functions from the input through the data
processing to the RF output and vice versa. The waveform includes all the signal processing
algorithms necessary to encode and decode messages sent over the air. In most current and
legacy radio systems the waveform functions are implemented as fixed hardware solutions using
electronic components. The waveform functions are fixed, and if new waveforms are required,
the only option is to replace the radio or add additional radios with the new waveforms. These
hardware based radio systems tend to be inflexible and lack any upgrade path.

Software based radios enable multiple waveforms to execute on a radio platform. With today’s
advanced general purpose processors along with data processing devices such as DSPs and
FPGAs, the concept of using a single multi-purpose platform to run many different waveform
applications can be applied in a similar manner to running software applications on a personal
computer. Multiple waveforms or reprogramming waveform functions helps share the cost of
the platform across waveforms instead of requiring a specialized radio for each application. An
additional benefit is that different applications can be operated concurrently thus interacting with
each other and sharing system resources such as processing power and memory. A waveform
application thus becomes a software product that executes on a software defined radio hardware
platform.

Utilizing a reconfigurable radio in space has constraints that do not exist for ground applications.
Space requires radiation hardened electronics which can not offer the same processing
capabilities found in state-of-the-art terrestrial counterparts. Because of the harsh radiation
environment of space, signal processing is typically achieved through specialized ASIC
components which have hard-wire functionality and are not amenable to reprogramming. Unlike
current commercial processors, radiation hardened general purpose processors for space are
limited to a few hundred MHz processing speed. These lower processing speeds and other
concerns for size, weight and power resources make it necessary to turn to other types of
processing elements such as DSPs and FPGAs for reprogrammable signal processing of near-
term space software defined radios. Space microprocessors offer the easiest and best solution for
reprogrammability but are only practical for low rate, less demanding data processing.

9.1 Waveform Abstraction

The STRS Architecture strives to isolate waveform applications from the underlying platform
hardware to facilitate development, testing, and operational of the software defined,
reconfigurable radio. One benefit gained from the architecture achieved during development
is waveform portability. The benefit of having portable waveform applications is that it
minimizes the overall development and possibly testing cost by having the same waveform run
on all radio platforms that implement the architecture. Although some software changes are
always likely when porting between hardware platforms, general purpose processor based radios

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 48 of 95

48

achieve a high level of portability. The architecture also considers the use of specialized signal
processors that are likely to be used by STRS compliant radios.

An important aspect contributing to the cost effective use of the STRS architecture is support for
waveform portability through the concept of software/hardware separation or abstraction. This
software/hardware separation is achieved in STRS by providing an operating environment on the
radio platform consisting of an infrastructure comprised of industry standardized portable
operating system interface (POSIX), augmented with specialized programming interfaces that
are unique to the STRS architecture. The architecture minimizes waveform dependency on the
implementation-specific features of the platform. The specific hardware details of the platform
are contained in the direct service support, HAL hardware drivers, the board support package,
and the HID specification. The interfaces provided to the waveform application through the API,
infrastructure and POSIX layers are consistent from platform to platform thus promoting re-
usability with minimal porting cost for the majority of the waveform.

A STRS waveform is a re-useable, portable, executable software application that is abstracted
from the radio platform. STRS waveform applications use radio services in the form of
specifically defined application programmer interfaces defined by the architecture. Waveform
developer’s can take advantage of the APIs by making use of its functionality, saving them the
task of programming everything from scratch. This approach enables waveform portability by
using platform services standardized by the architecture. The platform services are designed to
reduce the time to port waveforms from one platform to another since the same set of interfaces
and services are provided by each platform. The architecture promotes code reuse during
waveform application development by providing a library of compliant, reusable software
routines.

Because of the diversity of hardware platforms with a variety of processing elements and
operating systems, waveform porting will require the development of porting metrics for the
different waveform instantiations. The use of high-level criteria can help to identify high risk
areas that will affect portability thus allowing the waveform to be better adapted to anticipated
platforms. Portability assessment is composed of two parts. First, portability must be considered
starting at the design phase of the waveform to ensure that portability is addressed on a system
level prior to implementation. Portability assessment then analyzes the implementation itself;
the analysis is done on both the original and ported waveform.

Another aspect of software/hardware separation is the benefit of technology infusion. As new
technology provides advanced hardware with improved capabilities, the new hardware can be
incorporated into existing hardware platforms without affecting the majority of the waveform
implementation. Thus radio platforms can be upgraded providing improved performance and
added capabilities with minimal amount of effort and cost. As future waveform applications are
developed with new hardware technologies that provide better data handling and processing
power, these new applications will have capabilities to support networking and autonomous
reconfiguration. Intelligent communication systems that adapt to the environment and current
situation will be possible.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 49 of 95

49

9.2 Waveform Implementation

As shown in Figure 9-1, an example radio platform consists of one or more General Processing
Modules with GPPs, and optionally one or more Signal Processing Modules containing DSPs,
FPGAs, and ASICs. Waveform components loaded and executed on these modules provide the
signal processing algorithms necessary to generate or receive RF signals. The STRS
infrastructure provides the APIs and services necessary to load, verify, execute, change
parameters, terminate, or unload a waveform. The STRS infrastructure utilizes the hardware
abstraction layer to abstract communications with the specialized hardware, while the Hardware
Interface Definition (HID) physically identifies how modules are integrated on a platform.

H
I
D

Operating Environment with
POSIX Compliant RTOS

General Processing Module

Signal
Data

Signal Processing Module

Signal

H I D

H I D

HAL
Board

Support
Package

STRS APIs
Waveform
Control and

Services

STRS
Infrastructure

STRS APIs
Waveform
Component

A

Signal Processing Module

Waveform
Component

B

Waveform
Component

D

DataWaveform
Component

C

Signal

Figure 9-1 Waveform Component Instantiation

9.3 Waveform Selection
Platform developers have the option of providing telemetry values to indicate what types of
waveforms are installed. The method for selecting the waveform will be a combination of the
platform’s capabilities as well as the interface specification defined by Radio Control Services.

STRS will specify a configuration file format that contains two components, 1) a platform
specific components, and 2) a waveform specific component. The platform specific component
will contain information used by the platform to instantiate the waveform application on the
radio GPP. The waveform specific portion will be specified and written by the waveform
developer. This provides waveform developers with flexibility in choosing parameters and
values it deems pertinent to its implementation and is thus not restricted by the platform
providers.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 50 of 95

50

A waveform configuration file will identify the following waveform attributes:

• Required resources and percentage of usage
• Required GPP Services
• Images for Resources and Services
• Configuration Parameter Values

Because this information is contained in a file, the format and content can be waveform specific.
It must however allow the waveform to request and query services installed on the platform to
implement the waveform.

The following high level programmatic flow identifies the generic blocks or functions that a
typical waveform compliant with the STRS Architecture may execute to run an application
waveform.

Application_Entry_Point
 Read Arguments to identify Configuration File Name
 Read Configuration File
 Create Application Input Queues (names identified in configuration file)
 Request System Output Queue Handles (OE, TLM, CNDH, etc.)
 Request Buffer Pools
 Request Device Loads (HW Devices and SW Services)
 Verify all Loads completed
 Open needed device interfaces
 Request created services Queue Handles
 Send OE STRS_InitComplete
 Initiate main loop
 Check Queues for data and commands
 If START
 Set State to RUN
 If STOP
 Set State to STOP (other release all resources)
 If STS_REQUEST
 Construct response data record and call STRS_StatusReport

Appendix 14.2 contains examples of waveform configuration files and platform configuration
files.

9.4 Impact of Higher Frequencies and Data Rates
The STRS architecture is designed with the anticipation of waveform requirements well into the
future. Future waveforms are anticipated to operate in the UHF, S, X, Ku, and Ka- frequency
bands. Future data rates are also expected to increase into the 10’s Mbps and Gbps range.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 51 of 95

51

As NASA waveforms evolve to higher data rates and increased frequency bandwidths they will
require more processing power. Increased processing requirements necessitate shifting
functionality from GPPs into FPGAs and then into future signal processing technologies.
Operation in frequency bands above S-band requires an RF front end tailored for those
frequencies with present technology. The STRS architecture supports the use of different
processing types as required to balance the processing requirements with power availability.

Operation in Ka-band or higher frequencies has some current technology limitations. Present
operation in this band is strictly a matter of the RF section, which has been mentioned
previously, is out of the current realm of current digital domain processing. This implies that the
impact of Ka band support will mostly rest with the transceiver hardware, specifically the RF
section. Software support will only require that data types and resolutions are sufficient to define
operations in this band, and that sufficient software capabilities exist for supporting multiple up
and down conversions. There will, therefore, be no significant impact to the transceiver
architecture that already supports Ku and S-band. RF requirements to support Ka band operation
may include double or even triple conversion super heterodyne circuitry in both up and down
conversions, though tunability might only apply to a single conversion. However, this hardware
is largely of a fixed configuration, requiring only the proper frequency settings in order to
support operation. Also, due to the increased phase noise at higher frequencies, high-
performance applications may require additional baseband processing to address this additional
noise component. The software data ranges need to support the tuning range. Architecture
flexibility supports these different platform types. High-performance applications may require
additional processing to address the increased phase noise at higher frequencies.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 52 of 95

52

10 Software Architecture

10.1 Software Layer Interfaces

The STRS Architecture is predicated on the need to provide a consistent and extensible
development environment on which to construct NASA waveforms and space applications. The
breadth of this goal requires that the specification be based on 1) core interfaces that allow
flexibility in the development of application software and 2) hardware interface definitions that
enable technology infusion.

The software architectural model shows the relationship between the software layers expected in
an STRS compliant radio. The model illustrates the different software elements used in the
software execution and defines the software interface layers between waveform application and
the hardware platform operating environment and the interface between the operating
environment and the hardware platform.

Figure 10-1 represents the software architecture execution model. The software model achieves
the following objectives:

1) Abstracts the application waveform from the underlying operating environment
software to promote portability of the waveform application.

2) Within the abstraction layer, minimizes custom routines by using commercial

software standard interfaces such as POSIX.

3) Depicts the STRS software components as layers to specify their relationship to

each other and their separation from each other which enables developers to
implement the layers differently according to their needs while still complying
with the architecture.

4) Introduces a lower level abstraction layer between the operating environment and

the platform hardware.

Note: While software abstraction for general processors is typically
accomplished with board support packages and device drivers, abstraction
of hardware languages or firmware is less defined. The model represents the
software and firmware abstraction in this layer.

5) Indicates the relationship between the operating environment software and the

different hardware processing elements (e.g. processor, specialized hardware)

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 53 of 95

53

Figure 10-1 STRS Software Execution Model

The STRS Architecture provides two primary interface definitions, 1) the STRS API, and 2) the
STRS HAL specification, each with a control and data plane specification for interchanging
configuration and run-time data. The STRS API provides the interfaces that allow applications
to be instantiated and use platform services. These APIs also enable communication between
waveform and application components. The HAL specification defines the physical and logical
interfaces for inter-module and intra-module integration.

Table xx describes the different layers of the STRS software model.

Layer Description
Application / Services This layer encompasses the waveform and application entities that use

the services of the STRS infrastructure to perform the desired
functionality.

STRS API The STRS API provides a consistent interface for executing the
applications and services. The associated Device Control interfaces
provide a hardware abstraction layer (HAL) for the waveform
applications.

STRS Infrastructure The STRS infrastructure implements the behavior and functionality
identified by the STRS API.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 54 of 95

54

Layer Description
POSIX OS The STRS defines a minimum POSIX AEP for the allowed OS

services. This layer can either consist of a compliant POSIX RTOS, or
by a POSIX AEP Abstraction in conjunction with a non-compliant
RTOS.

Direct Service Support This layer identifies the ability for the STRS infrastructure to have a
direct interface to the hardware drivers on the platform.

HW Drivers The hardware drivers provide the platform independence to the
software and infrastructure by abstracting the physical hardware
interfaces into a consistent Device Control API.

BSP The Board Support Package (BSP) provides the hardware abstraction of
the GPM module for the POSIX-compliant Operating System.

GPM General Purpose Module on which the STRS infrastructure executes.
Specialized Hardware Physical layer of the hardware modules existing on the STRS Platform.

Table 10-1 STRS Software Component Descriptions

The STRS Software Architecture presents a consistent set of APIs to allow waveform
applications, services, and communication equipment to interoperate in meeting a waveform
specification. Figure 10-2 represents a view of the platform operating environment that depicts
the boundaries between the STRS infrastructure provided by the platform developer and the
components that can be developed by 3rd party vendors (e.g. waveform applications and
services).

A key enabler of waveform portability is the removal of waveform dependencies on the
infrastructure. By having waveforms and services conform to the API specification and not take
advantage of explicit knowledge of the infrastructure implementation (sidestepping APIs and
using direct OS calls,) waveforms and services have a higher likelihood of porting to other STRS
platform implementations. The final limitation will be on the physical characteristics of the
hardware in supporting the waveform’s requirements (frequencies, data rates, etc.)

Figure 10-2 extends the view of the software architecture from the diagram introduced in Figure
10-1 to include additional detail of the infrastructure, POSIX subsystem, and hardware platform.
The vertical arrows identify interface dependencies and isolations. For instance, the Waveform
Applications will not directly call the driver API but must use the provided STRS API, thus
providing the “abstraction layer” that helps isolate the waveform from the platform.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 55 of 95

55

Waveform Application

Could call STRS OS Abstraction Layer
functions as well as POSIX Calls

Communicates with STRS API

STRS Infrastructure

STRS API

Logical HAL (Driver Interface)

Radio Services (Radio Control, RF)

POSIX OS

HW Drivers

BSP

Communication
Equipment

GPM Platform Hardware

Application Level

Kernel Level

Direct Driver Service Support

Driver APIRegistered OS ServicesPhysical HAL
(Access to Hardware)

HW IO Interface

Physical Level

Figure 10-2 STRS Operating Environment with POSIX OS

Table 10-2 describes the elements of the detailed operating environment depicted in Figure 10-1.
In the case that the RTOS does not support the POSIX subset, the missing functionality will be
required to be implemented in the STRS infrastructure. The diagram in Figure 10-3 illustrates
this case, by the inclusion of a POSIX abstraction layer in the infrastructure. As a note, this

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 56 of 95

56

abstraction is not only for a non-POSIX RTOS, but the POSIX abstraction layer would
implement any POSIX functions required but not implemented by the RTOS.

Layer Description
Waveform / Services This layer encompasses the waveform and application entities that

use the services of the STRS infrastructure to perform the desired
functionality.

STRS API STRS defined interfaces that waveform applications
POSIX Abstraction Layer An optional interface (see Figure 4-2) that provides POSIX OS

services to the waveform application and services on platforms with
an RTOS that does not provide POSIX interfaces.

Radio Control Services Responsible for the handling the radio commands and telemetry for
STRS. Applications use STRS interface to communicate telemetry
and receive commands from flight computer.

Logical HAL Interfaces Provides the Device Control interfaces that are responsible for all
access to the hardware devices in the STRS radio

POSIX RTOS STRS POSIX AEP compliant operating system.
RTOS Non POSIX AEP chosen for an STRS Radio. The POSIX

Abstraction Layer will provide application with a consistent AEP
interface that is mapped into the chosen RTOS functions.

Physical HAL This specification provides the physical medium as well as
interconnections between modules in the STRS Radio.

Registered OS Services Services that are integrated with the chosen OS to provide services
such as MAC layer interface to physical Ethernet hardware.

Driver API RTOS supplied APIs are abstracted from waveforms via the Device
Control API.

BSP A BSP (Board Support Package) is the software that implements the
device drivers and parts of the kernel for a specific piece of
hardware. A BSP contains source files, binary files, or both. A BSP
contains an OEM Adaptation Layer (OAL), which includes a boot
loader for initializing the hardware and loading the operating system
image. Essentially the OAL is all of the software that is hardware
specific. The OAL is actually compiled and linked into the
embedded operating system.

HW IO Interface Device drivers have been created for this physical interface.
Table 10-2 STRS Operating Environment with POSIX OS Component Descriptions

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 57 of 95

57

Waveform Application

Could call STRS OS Abstraction Layer
functions as well as POSIX Calls

Communicates with STRS API

STRS Infrastructure

STRS API

POSIX Abstraction Layer

Logical HAL (Driver Interface)

Radio Services (Radio Control, RF)

OS

HW Drivers

BSP

Communication
Equipment

GPM Platform Hardware

Application Level

Kernel Level

Direct Driver Service Support

Driver APIRegistered OS ServicesPhysical HAL
(Access to Hardware)

HW IO Interface

Physical Level

Figure 10-3 STRS Operating Environment without POSIX OS

Note: Work continues to determine how to accommodate non-POSIX RTOS’s within
the architecture. Discussion at the time of this writing include eliminating the non-
POSIX RTOS as an option of the STRS architecture, but a final determination has not
been made.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 58 of 95

58

10.2 Infrastructure

The STRS Infrastructure is part of the Operating Environment (OE) and provides the
functionality for the interfaces defined by the STRS API specification. Once the waveform is
deployed the infrastructure supports the waveform operations through the STRS APIs and its
internal subsystems. The infrastructure is composed of multiple subsystems that interoperate to
provide the functionality to operate the radio. The components shown in Figure 10-4 represent
the high level subsystems and services needed to control waveforms and applications within the
radio platform. These services are provided by the platform infrastructure and support
applications as they execute within the radio platform.

STRS APIs

STRS Infrastructure

Upload MgmtUpload MgmtRadio ControlRadio Control

System MgmtSystem Mgmt Message CenterMessage Center

Device ControlDevice Control

POR Self TestPOR Self Test

Figure 10-4 STRS Infrastructure Subsystems

The main services are Radio Control, System Management, Upload Management, Device
Control, and a Message Center. The platform infrastructure also handles the power on reset
(POR) and self test functions of the radio independent of the waveform applications. Table 10-3
describes each subsystem component of Figure 10-4 in greater detail.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 59 of 95

59

Infrastructure
Subsystem Description

STRS API
Provide the interfaces to the application and services existing on the
STRS Radio. This API will be described in greater detail later in this
document

Message Center

This subsystem manages the inter-process messaging and queue
allocations for the STRS Radio. It has the responsibility of providing
the handle requests made by applications. This also pertains to the
communications between subsystems in STRS infrastructure

Radio Control
Provides the interface exchange between the STRS Radio and the
Spacecraft Bus. All command and telemetry processing is handled by
this subsystem.

System Management

This subsystem controls the instantiation and teardown of application
and services within the STRS Radio. This activity includes keeping
track of what resources in the radio are being used and when new
functionality can be installed.

Device Control
This subsystem handles the instantiation of the device drivers as well
as handling the multiple stages required in actually programming a
device (FPGA, DSP).

Upload Management

This subsystem has the responsibility to take the individual packets
delivered from Radio Control and process the reassembled upload
such that it can be validated, authenticated and eventually stored in
the file system.

POR Self Test
This subsystem provides all the interfaces and control that is required
in handling the Power On Reset (POR) and all diagnostic self test
processing required for the Radio.

Table 10-3 Infrastructure Subsystem Descriptions

The infrastructure comprises the implementation of the API interface. It hides the routine names
actually used by the RTOS to facilitate portability. It will call as many POSIX, RTOS, or BSP
functions as necessary to accomplish the required radio functions. The STRS application
program interface (API) is the well-defined set of interfaces used by the waveform applications
to access specific radio functions. Although the STRS infrastructure may use any combination
of POSIX, RTOS or BSP functions to implement a radio function, which may vary on different
platforms, the STRS API interface will be the same to allow portability.

The STRS APIs provide an open software specification for the application engineer to develop
STRS waveform application programs. The goal is to have a standard API available to cover all
application program requirements so that the waveform programs can be reused on other
hardware systems with minimal porting effort and cost of the waveform software (and firmware).
Two trade-offs in the development of the API specification are a) the larger the API specification
then the larger the software overhead and b) a larger API specification limits the scope of
internal operations. The STRS API definition depends on the selected size of the general purpose

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 60 of 95

60

processor and the type of the operating system. Another set of STRS APIs are defined to support
the external interface commands for normal radio operations.
The API layer specification decouples the intellectual property rights of platform, waveform, and
module developers. The API layer allows development and interoperability of different radio
aspects while protecting the investment of the developers. The definition of APIs is based on a
set of sequence diagrams derived from the use cases identified in the Appendix A.

10.2.1 Application Programmer’s Interface (API)
Development

A key aspect of a software-architecture is the definition of the APIs that are used to facilitate
software configuration and control of the target platform. The philosophy on which the STRS
architecture is based avoids the conflict between open architecture and proprietary
implementations by specifying a minimum set of APIs that are used to execute waveform
applications and deliver data and control messages to installed hardware components.

The STRS API has been grouped in the following categories: System Management, Interprocess
Communications, Device Control, and Telemetry and Radio Commands.

The System Management API provides the functionality to control and operate waveforms.
These includes APIs that must be supplied by the application waveform and services or provided
by the platform software environment to the waveform and services. Table 10-4 lists the System
Management APIs for the STRS Architecture.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 61 of 95

61

Function Description

STRS_StatusRequest* Request for state information from an application or service
configured in the STRS infrastructure.

STRS_StatusReport* Response to APP_StatusRequest

STRS_InitComplete* Informs STRS that the waveform application has completed
initialization and is ready to begin waveform processing.

STRS_StartProcessing* Request application to begin executing its functionality
STRS_StopProcessing* Request application to halt executing its functionality.

STRS_FreeResources* Request application to release any resources (memory,
devices) it has requested back to system control

STRS_LoadDevice Requests that a binary image be transferred to target device.
Application can poll device using STRS_StatusRequest

STRS_LogError

Provides services and applications a logging service that
records timestamped information on conditions or events that
have occurred. This information can be extracted via
telemetry request for post processing.

STRS_LogTelemetry

This service provides application with the ability to write to a
block of memory allocated by the infrastructure to hold
telemetry. This interface accepts a pointer and a memory size
value that will then be copied to the telemetry block.

STRS_RegisterException
Handler

STRS will provide a set of predefined exceptions that can be
supplied custom handling software. Not all exceptions may
be configurable on all platforms. The waveform developers
must consider this when writing applications designed for
multiple platforms.

STRS_RegisterISR
STRS provides this interface to allow developers to create
custom interrupt service routines for user interrupts provided
by the platform.

Table 10-4 STRS System Management APIs

APIs designated with a ‘*’, can be invoked by both the STRS infrastructure and applications.
Thus, an application can request status from other applications and services. For example, a
waveform application may have instantiated a service for handling the message protocol and will
be sent the STRS_InitComplete() message to inform the application that it is available for
activation.

The Interprocess Communication API provides a basic set of interfaces to allow applications to
communicate via messages between applications. As the ability for waveforms to communicate
with other STRS applications is crucial for the operation of radio services, STRS specifically
defines the API to promote application portability. Table 10-5 lists the Interprocess
Communication APIs for the STRS Architecture.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 62 of 95

62

Function Description

STRS_QueueCreate Creates a message queue for an application that can then be
registered for use by other applications and resources

STRS_QueueDelete Deletes message queue

STRS_MessageSend
Provides mechanism to send message buffer between
registered applications or services. Buffer management is
handled internally.

STRS_MessageReceive Function to retrieve message from queue created for
application. This can be a blocking or non-blocking request.

STRS_QueueRegister Provides name and handle to the STRS such that other
CSCIs can communicate with the WF application or service.

STRS_QueueRequest Application requests a handle from the STRS such that it can
establish communications with another service or CSCI

STRS_QueueUnregister Removes message queue Id from STRS database and frees
associated resources.

Table 10-5 STRS Interprocess Communication APIs

The Device Control API consists of interfaces between the waveform and the endpoint
communication algorithm block. A set of service functions have been defined that provide basic
interface services to the devices via the HAL drivers. Each driver will support the ability to
manage channel priorities for modules that support multiple channels. Table 10-6 lists the
Device Control APIs for the STRS Architecture.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 63 of 95

63

Function Description

STRS_DeviceOpen
Establishes connection with the device. The Application can
provide a queue identifier with this call such that any
asynchronous messages from the device can be delivered.

STRS_DeviceClose Closes the connection to the device
STRS_DeviceReset Resets the functionality of the device. This does not force

the application to perform another STRS_DeviceOpen call.
STRS_DeviceExecute Activates the devices radio functionality.
STRS_DeviceStop Device is to halt all processing and maintains current

attribute settings. (Reset will set all attributes to default
values)

STRS_DeviceGetAttribute Requests and returns an attribute of the device. The device
specifies the attribute identifiers and data types. As the
design of the STRS evolves, standard attributes will be
identified that all devices (drivers) will need to support, such
as Self-Test results.

STRS_DeviceSetAttribute Sets an internal attribute of the connected device. The
device specifies the attribute identifiers and data types.

STRS_DeviceRead Performs a data read from the device. The function
arguments control the size and location for the retrieved
data. All devices do not support this function.

STRS_DeviceWrite Writes data to the device. The function arguments control
the size and location of data to send. All devices do not
support this function

STRS_DeviceCommand Writes command data to the device. The command
arguments are placed in a data buffer based on the endpoint
algorithms specification. This allows the STRS to pass this
data without needing to be cognizant of the data format.

STRS_DeviceFlush Flush all queued commands within device driver and return
buffers to buffer manager.

Table 10-6 STRS Device Control Services

10.3 Host Spacecraft Interface

Telemetry and Radio Command interfaces are the externally accessible interfaces of an STRS
radio. All communications between the flight computer and the STRS radio occurs on the
spacecraft bus specified by the protocol of these interfaces. Different physical spacecraft bus
implementations may have different transfer characteristics, but the Telemetry and Radio
Command interface will translate them into a recognizable format.

The Radio Command Interface identifies a set of common radio services that provide Spacecraft
Systems Engineers with a consistent set of command and control interface when planning the
integration of a STRS radio onto a spacecraft. Table 10-7 identifies and groups these interfaces.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 64 of 95

64

Function Description
Waveform Control

Waveform Selection

This command will request the STRS radio to instantiate the
application and facilitate the installation of devices and resources
requested by the application. This service is not to impact existing
waveforms. The command arguments will include the waveform
ASCII name of configuration file that identifies all files and
parameters specified for a waveform.

Waveform Start
This command requests an initialized waveform to begin processing
waveform data. If the waveform has not been selected or completed
initialization, the command will be rejected

Waveform Stop
This command requests a running waveform application to halt
processing of waveform data. The waveform resources are not
deallocated.

Waveform Unload
This command requests that the STRS infrastructure unload the
identified waveform and release all resources associated with the
application.

Resource Control Interface

Upload File Request

This request will upload a file and place it in a repository identified in
the command arguments. The command can be rejected for several
reasons that follow the pattern in all file systems. If rejected, the
reason will be made available for query. If accepted, the file will be
transferred to the STRS radio via the Block Data Transfer
(BDT)Utilities.

Delete File Request An authenticated request for deletion of a file in the repository.

Download File Request

This command is complementary to the Upload File Request. This
command will transfer a file from its location in the repository across
the Spacecraft Bus Interface using the Block Data Transfer (BDT)
Utilities

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 65 of 95

65

Upload_BDT

The Upload_BDT is a Block Data Transfer handshaking protocol that
allows large blocks of data to be transferred from the flight computer
to the STRS Radio. The protocol handles the fragmentation and
reassembly of sequential transfers across the spacecraft bus interface.
The Upload File Request has to be accepted prior to the start of any
upload transfer.

Download_BDT
The Download_BDT is the corollary to Upload_BDT. Likewise, this
command (or sequence of commands) is invalid if the Download File
Request has not been accepted.

Telemetry Control

It is envisioned that several different telemetry structure definitions
may exist for different classes of STRS Radios. Many systems will
employ a polling technique where the data is provided only upon
request. Other systems may desire a grouping of telemetry that can be
identified to be sent at some periodic rate.

Telemetry Control Interface

Telemetry Control

It is envisioned that several different telemetry structure definitions
may exist for different classes of STRS Radios. Many systems will
employ a polling technique where the data is provided only upon
request. Other systems may desire a grouping of telemetry that can be
identified to be sent at some periodic rate.

Application Command Interface

Application_Command

The Application_Command allows a data stream to be transferred to
an identified application executing on a STRS radio. The Radio
Command Interface will verify the destination of the command exists,
and use STRS_MessageSend to deliver the data.

Table 10-7 STRS Radio Command Interfaces

10.3.1 Radio Telemetry

As with commands, a specific standard data capacity and data format will be defined by a STRS
Platform. The specification will fall onto the platform since it will define the hardware and
components. The following data elements will be included in the standard telemetry:

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 66 of 95

66

• Power Values
o Voltage, Current, and Power Readings

• Environment Values
o Temperature
o Pressure

• POR Test Result Status
o RAM Test
o ROM Test
o File Mgmt Test
o PROM Software revision
o STRS Software revision
o Available File Space
o Maximum Memory Configuration
o Individual Module Self Test Status (GO/NO GO)

• Module Configuration
o Module Type
o Module Location
o Hardware Revision

The Radio Command Services subsystem provides the STRS_LogTelemetry interface that allows
waveform applications to provide custom telemetry data. Each platform will define the
maximum size allowed for each application.

10.4 Portable Operating System Interface (POSIX)

POSIX is an acronym for Portable Operating System Interface and refers to a family of IEEE
standards 1003.n which describe the fundamental services and functions necessary to provide a
UNIX-like kernel interface to applications. POSIX itself is not an operating system but is
instead the guaranteed programming interfaces available to the application programmer.

POSIX specifies a set of operating system interfaces and services and is not specifically bound to
a specific operating system and has in fact been implemented on top of operating systems such as
DEC VMS and Windows NT. However the creation of POSIX is closely coupled to the UNIX
operating system and its evolution. The goal was to create a standard set of interfaces that all the
UNIX flavors would support to enable software portability. Even though POSIX technically
refers to the family of specifications it is more commonly used to refer specifically to IEEE
1003.1 which is the core POSIX specification.

Characteristics of POSIX include;

• Application-Oriented
• Interface, Not Implementation
• Source, Not Object, Portability
• The C Language - system interfaces written in terms of ISO C standard

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 67 of 95

67

• No Superuser, No System Administration
• Minimal Interface, Minimally Defined - core facilities of this standard have been kept as

minimal as possible.
• Broadly Implementable
• Minimal Changes to Historical Implementations
• Minimal Changes to Existing Application Code

The original POSIX specification was based on a general purpose computing platform but a
series of amendments addressed the unique requirements of real-time computing. These
amendments were:

IEEE Std 1003.1b-1993 Realtime Extension
IEEE Std 1003.1c-1995 Threads
IEEE Std 1003.1d-1999 Additional Realtime Extensions
IEEE Std 1003.1j-2000 Advanced Realtime Extensions
IEEE Std 1003.1q-2000 Tracing

These amendments were rolled into the base specification in version IEEE 1003.1-1996.
IEEE 1003.13 provides a standards-based option for a STRS AEP.

The last major revision of POSIX was IEEE Std 1003.1, 2004 and was published April 30, 2004.

10.4.1 STRS Application Environment Profile (AEP)

POSIX was the chosen as part of the STRS Architecture Specification because it defines an open
standard operating system interface and environment to support applications portability.
However due to the limited resources on a space-based platform it was not practical to support
the entire IEEE 1003.1 specification.

The POSIX 1003.1 standard provides a means to implement a subset of the interfaces by using
“Subprofiling Option Groups”. These option groups specify “Units of Functionality” that can be
removed from the base POSIX specification.

IEEE 1003.13 created four Application Environment Profiles (AEPs) that specified subsets of
1003.1 more suitable to embedded applications. These profiles were:

• PSE51 – Minimal Realtime Systems Profile
• PSE52 – Realtime Controller System Profile
• PSE53 – Dedicated Realtime System Profile
• PSE54 – Multi-Purpose Realtime System Profile

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 68 of 95

68

The profiles are each upwardly compatible and consists of the basic building blocks shown in
Figure 10-5 11

Figure 10-5 Profile Building Blocks

Each of these profiles has increasing capabilities and increasing requirements on resources.
Profiles 51 and 52 run on a single processor with no Memory Management Unit (MMU) and
thus imply a single Process containing one or more threads. Profile 52 adds a file system
interface and asynchronous I/O. Profile 53 adds support for multiple processes thus requiring an
MMU. The last and largest profile 54 adds support for interactive users and is almost a full
blown POSIX 1003.1 environment. The increasing profiles are supersets of the lesser such that
PSE52 includes all the features of a PSE51. Upward portability between profiles is supported by
requiring certain APIs such as memory locking for profiles PSE51 and PSE52. Even though
there is no MMU on the PSE51 and PSE52 profiles by requiring the API hook code written for
these profiles are portable to a PSE53 or PSE54.

Currently the STRS Architecture will support platforms based on profiles PSE51 through PSE54
though PSE54 only be used for development platforms and ground stations. Allowing multiple
profiles allows the architecture to scale with mission class. Waveforms developed for a specific
profile will be compatible with higher profiles i.e. a profile 52 waveform could be ported to

11 IEEE Std 1003.13-2003

PSE51

PSE52

PSE53

PSE54

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 69 of 95

69

profile PSE53 and PSE54 platform, but not vice versa. This upward scalability anticipates that
smaller platforms will desire smaller profiles and will not have the resources to run larger
waveforms which comply with the larger profiles. Appendix B provides a table comparing the
POSIX profile functionality for Subset PSE51 through PSE53.

10.5 Network Stack
A Network Stack is the part of the operating system used for networking, usually TCP/IP.
Communications over a network use a layered network model. TCP/IP is the protocol that is
used to transport information over the internet and the TCP/IP network model consists of five
layers: the Application layer, the Transport layer, the Network layer, the Data Link layer, and the
Physical Network.

10.6 Real Time Operating System (RTOS)

10.6.1 RTOS Introduction

The RTOS is an integral part of the Operating Environment (OE) for the STRS Software
Architecture. Modern communication systems perform simultaneous waveform processing in
dedicated hardware at very fast speeds to which users have become accustomed. Any change in
this environment must equal or exceed previous performance for it to be considered for usage.
As such, the proposal to perform waveform processing via software modules executing on a
General Purpose Processor (GPP) requires careful consideration of both the necessary operating
system characteristics and the waveform processing requirements. In a simplistic sense, a
computer operating system manages the usage and sharing of resources between competing users
(i.e tasks) to perform work. In this case, each task is performing a specific instance of waveform
processing. When the operating system decides to stop one task’s execution and start another
task executing, the current context of the machine (register values, instruction pointers, etc) must
be saved and then switched to accommodate the requirements of the new task. On a desktop
computer system, context switching between competing tasks is performed on an ad-hoc basis
with no guarantee of task execution. This is unacceptable for spacecraft. Context switching
between execution threads and deterministic thread execution are the driving characteristics for
an operating system. An RTOS provides the capabilities of fast, low overhead for context
switching, and a deterministic scheduling mechanism so that processing constraints can be
achieved when required.

The following sections examine modern RTOS characteristics and these relate to the constraints
imposed by space qualified hardware components.

10.6.2 RTOS Performance
A modern RTOS is primarily designed for either performance (monolithic kernel) or
extensibility (microkernel). Monolithic kernels have tightly integrated services, less run-time

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 70 of 95

70

overhead but not easily extensible. Microkernel’s have somewhat high run-time overheads but
are highly extensible. Most modern RTOSes are microkernels and although modern
microkernels have more overhead than monolithic kernels, they have less overhead than
traditional microkernels. Modern ROTSes run-time overhead is decreased by reducing the
unnecessary context switch. Important timings such as context switch time, interrupt latency,
semaphore get/release latency must be kept to a minimum.

There are a number of vendors capable of providing the RTOS capabilities for a space
environment. However, it is recommended that STRS platform providers and waveform
developers continue to assess modern RTOS capabilities and chose an RTOS that meet their
target environment requirements.

Fundamental to STRS application development is the existence of a RTOS kernel that can be
configured and scaled down to fit into the executable image of the STRS system. The executable
size of an application is highly dependent on the hardware platform chosen. Various white
papers are available describing the performance and resource requirements of RTOS vendors.

10.6.3 Safety and Security

The RTOS specification regarding safety and security is TBD.

10.7 Hardware Abstraction Layer
The Hardware Abstraction Layer (HAL) is the library of functions that provides a platform
independent view of the specialized hardware by abstracting the physical hardware interfaces.
The HAL implements any software that is directly dependent on the underlying hardware. Two
examples of specialized hardware currently in use on software defined radios are FPGAs and
DSPs. Examples of functionality that a HAL might need to support include boot code for
initializing the hardware and loading the operating system image, context switch code,
configuration and access to hardware resources. The HAL consists of what some providers call
the drivers or Board Support Package (BSP). Most companies already provide such libraries to
allow use of the specialized hardware. This layer enables the STRS infrastructure to have a
direct interface to the hardware drivers on the platform. The purpose of the HAL is to provide
the ability to develop new modules within a provided STRS Infrastructure. An added benefit to
this layer is that it facilitates porting the operating environment (OE) between platforms.

The HAL API (Application Programmer’s Interface) shall be published so that specialized
hardware made by one company may be integrated with the STRS Infrastructure made by a
different company. The STRS Infrastructure will use the HAL APIs to communicate with the
HAL, and the HAL will communicate with the specialized hardware via the physical interface
defined by the platform vendor. The HAL API defines the physical and logical interfaces for
inter-module and intra-module integration. The HAL API documentation must include a
description of each method/function used, including its calling sequence, return values, an

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 71 of 95

71

explanation of its functionality, any preconditions before using the method/function, and the
status after using the method/function. Examples should be included where helpful.

The HAL API documentation shall also contain information about the underlying hardware such
as address and data interfaces, interrupt input and output, power connections, plus other control
and data lines necessary to operate in the STRS platform environment. The electrical interfaces,
connector requirements, and physical requirements are specified by the platform provider.
Information on a module’s use of data in the specification will be made available to waveform
developers either directly from the manufacturer (specific types of components) or from the
platform provider (memory maps based on positions within chassis/enclosure). The STRS
Infrastructure will use this information to initialize the hardware drivers such that the control and
data messages will be appropriately delivered to the module.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 72 of 95

72

The HAL fosters portability and reusability of the STRS Infrastructure and specialized hardware
in different combinations from that originally designed. It can reduce the design efforts
otherwise necessary to adapt the software on a new hardware architecture.

An example of the HAL API, for the function OPEN, is shown in Figure 10-6:

RESULT OPEN(HANDLE* resourceHandle, RESOURCE_NAME resourceName)

Description:
 Open a resource by name. If no errors are encountered, use the
 resourceHandle to access the resource.

Parameters:
 resourceHandle - [out] A pointer to place the opened handle
 into.
 resourceName - [in] The name of the resource to open.
Return:
 A 32-bit signed integer used to determine whether an error has
 occurred. Use TEST_ERROR to obtain a printable message.
 Zero - No errors or warnings.
 Positive - Warning.
 Negative - Error.
Precondition:
 Resource must be closed before executing this command.
Postcondition:
 Resource will be open and ready for further access if no error
 was encountered.
See also:
 READ, WRITE, CLOSE, TEST_ERROR
Example:
 #include <HALResources.h>
 …
 RESULT result;
 HANDLE resourceHandle;
 RESOURCE_NAME resourceName = "FPGA";
 result = OPEN(&resourceHandle, resourceName)
 if (result < 0) {
 cout << "Error: " << TEST_ERROR(result) << endl;
 } else if (result > 0) {
 cout << "Warning: " << TEST_ERROR(result) << endl;
 }

Figure 10-6 Sample HAL On-line Documentation

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 73 of 95

73

11 Architecture Evaluation

11.1 Scalability
The STRS architecture provides the scalability addressed in the STRS Architecture
Requirements Document by providing a set of interfaces to configure and manage data flow
through the radio without mandating the communication mechanisms. This allows STRS
Platform developers to address spacecraft requirements of size, weight, and power yet still
support the ability to port existing waveform implementations on the new platform. The platform
candidate implementations identified in Section 5.1 demonstrates the ability of STRS to scale
from small to large radio instantiations.

The STRS architecture also promotes the ability to create new hardware modules that can be
integrated into an existing platform to meet different mission requirements. The following
sections address the architecture’s ability to integrate specific capabilities that are viewed as
future advancements in space communications.

11.1.1 Infrastructure Scalability
The STRS Architecture is specified by its interfaces. This allows implementations to take
advantage of new technologies and still provide waveform portability. The STRS Architecture
can be used in multiple boxes on a satellite and thus, is not restricted to only radios. In these
configurations, as well as multiple GPM implementations, CORBA can be integrated in the
infrastructure to provide the distributed communications for the STRS APIs. Likewise, radios
with strict resource limitations can scale the architecture to provide only the services required for
a small set of waveforms.

Another example of STRS scalability and extensibility is future support for dynamic resource
allocation. A discuss earlier in this document, the current STRS architecture eliminated dynamic
resource allocations in the radio based on current NASA operational usage. As NASA use and
vision for the architecture expands, the need for dynamic resource selection becomes a viable
technology option. By extending the STRS System Management APIs, along with additional
information in the waveform configuration file, the infrastructure could coordinate with the
waveform application in the selection of hardware used to implement the application.

11.2 Leveraging STRS Radio Developments
As mentioned in the Scalability section, STRS platform developers will publish the hardware
integration interfaces implemented for the platform that allow 3rd party organizations to develop
additional hardware modules. This enables NASA to request modules with alternative
functionality that can be integrated into an existing radio infrastructure without incurring the
NRE cost for an entire platform.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 74 of 95

74

Likewise, it is envisioned that a NASA Waveform Library would be created to house the
developed waveforms that could then be used as building blocks for other waveforms and
instantiations onto new platforms.

11.3 Reliability and Availability
The flexibility of the STRS architecture (both hardware and software) allow for multiple
solutions in developing a radio that provides high reliability and availability. This allows a
scalable capability that is not dependent on the STRS infrastructure but on the choice of design
components and the System’s requirement specification. The existence of an MMU and the
selection of a COTS operating system that supports protected memory domains is an example of
such a choice. The implementation of these features would be integrated into the STRS APIs to
preserve application portability between platforms.

For example, a spacecraft’s designers desire a highly available, fall back radio (or Keep-Alive),
integrated into the STRS radio. Developing and integrating a module that performs the entire
waveform into the STRS architecture can accomplish this. The default configuration of the radio
will use the hardware waveform module and will not transition to other waveforms until
commanded via the payload flight computer.

The STRS operating environment will periodically poll applications and hardware interfaces to
collect status information. This information will be made available to all services via the Radio
Control service. Likewise, each module has the responsibility of performing periodic health
checks and report off nominal conditions to interested modules that registered for this
information during configuration.

By keeping the STRS architecture implementation as simple as possible, the impact on reliability
due to internal STRS issue is reduced. This is apparent in that the testing of the platform’s
architecture implementation can be thoroughly tested through the interfaces. Once a platform’s
architecture is verified and validated, the reliability issue becomes a component of the reliability
of applications and its services.

11.4 Reconfigurability
The benefit of using reconfigurable technology is the ability to make changes based on actual
environmental or physical conditions experience by the spacecraft. Hardware, firmware, and
software reconfiguration in the operational environment enables modification of radio units post-
launch to meet varying mission needs.

The STRS architecture supports two modes allowing modifications to operational waveforms.
The first mode performs Quality of Service (QoS) adjustments by invoking STRS API services
to change configuration parameters. The QoS measurements could consist of hardware
indicators or from within the waveform protocol in conjunction with information provided from
another radio.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 75 of 95

75

The second mode consists of commands that change waveform parameters based on open loop
information. For example, the ground control changes the gain to improve the bit error rate.
These commands are defined during waveform development and use the STRS interface
mechanisms for delivery to the waveform.

11.5 Reprogrammability (Remote Waveform Upload)
The ability to remotely upload waveforms and services to an operational STRS radio is
supported by the architecture. The implementation of this mechanism is dependent on the
spacecraft’s system architecture philosophy. On one spacecraft, it may be decided that uploads
are entirely handle by the radio. Thus a separate channel may be dedicated to the delivery of the
data and the waveform application will interface with the STRS API in writing the new files into
storage. Other spacecrafts may define that all communications and commands are directed to a
flight computer. The flight computer can then validate the upload and use the spacecraft bus
interface in commanding and providing the radio with the upload.

11.6 Performance
Currently, STRS software architecture inherently does not have performance metrics in that
performance is a measurement of a single point implementation (both hardware and software).
What can be analyzed is the interaction between components for specific scenarios. Typically,
the greater number of messages involved between components, the longer the operation will
take. This approach is still limited in that one must know the distribution mechanisms for these
messages to assign a weight factor. For instance, a message that must cross a physical boundary
will have greater performance implications than a message sent between queues on the same
processor.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 76 of 95

76

11.7 Security
Security has become increasingly important in protecting NASA space assets. The STRS
Architecture can provide various levels of security by means of its modular architecture and its
ability to integrate modules within the HAL infrastructure.

11.7.1 Type I Security

Ext. RF Equip.

SPM

RFM

DSP FPGA

Antenna

Frequency
Control

ADC/DAC
RF Circuits

B-GPM WF

Waveform API

STRS Infrastructure

HAL

CODEC

SEC

Crypto ASIC

R-ASIC

B-ASIC

R-GPM WF

Radio
Command

Waveform API

STRS Infrastructure

HAL

SBI
Device

Serial
Device

SEC
Device

SEC
Device

Ext. RF Equip.

SPM

RFM

DSP FPGA

Antenna

Frequency
Control

ADC/DAC
RF Circuits

B-GPM WF

Waveform API

STRS Infrastructure

HAL

Waveform API

STRS Infrastructure

HAL

CODEC

SEC

Crypto ASIC

R-ASIC

B-ASIC

R-GPM WF

Radio
Command

Waveform API

STRS Infrastructure

HAL

Waveform API

STRS Infrastructure

HAL

SBI
Device

Serial
Device

SEC
Device

SEC
Device

Figure 11-1 STRS with Type I Security Module

Type I Security is defined as, “Certified by NSA for Classified Information protection.” Type I
Security requirements are independent of the radio architecture, thus the basic security
architecture for STRS is similar to that of the JTRS SCA. The security architecture can be
broken down into three parts that provide:

• RED processes and functions
• Cryptographic processes and functions
• BLACK processes and functions

For a list of the unclassified requirements and discussions on the implications to SDR
functionality, refer to the Section 4 of the Security Supplement to the SCA Specification (JTRS-
5000 SEC V2.2.1).

11.7.2 Type III Security
Type III non-classified cryptographic requirements are not as rigid as Type I classified
cryptographic requirements in managing the separation of Red and Black data. Type III modules
follow the NIST FIPS 140-2 requirements.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 77 of 95

77

11.8 Networks
The STRS Architecture has been structured such that networks (on and off board) can be
implemented. The STRS Architecture accommodates network protocols as services that can be
made available to waveforms and I/O devices. With STRS ability to upload new software and
dynamic hardware images, advancements and replacement of existing protocols can be
accomplished without affecting a spacecraft’s mission resources.

NASA hosts a forum titled Space Internet Workshop. The Space Internet Workshops’ goal is to
foster dialog on current and near-term related activities for deploying network technologies for
flight missions and identify critical technology development areas. As new concepts and
techniques are developed to support a Space Internet connection, a STRS radio would be able to
adapt and participate in this advancement.

11.9 Custom Modules
The ability to integrate custom modules into a STRS platform provides mission planners the
ability to insert technology that could reduce payload SWaP. One example would be the
introduction of a GPS module. GPS is a very specific and mature waveform where 3rd party
components are widely available that allow for small SWaP with minimal costs. A STRS
application can be developed to control and acquire GPS data to be delivered to a flight computer
or used internally for managing radio contacts.

11.10 Application Support
The STRS Architecture has the ability to execute applications that provide functionality other
than waveform support. For example, an application can be written conforming to the STRS
API interfaces to perform data compression while the spacecraft is out of radio contact. The
STRS Architecture also supports the capability to have additional GPP modules within the radio
that can be dedicated to these applications and thus be independent of the waveforms executing
on the other radio resources.

The STRS Architecture also supports the ability of applications to communicate with each other.
This ability allows for the development of communications architectures such as bent-pipes by
having the crosslink waveform application provide data to a downlink waveform.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 78 of 95

78

11.11 High Data Rate Waveforms and Hardware
The following diagram is an example of how HDR applications can be integrated into the STRS
architecture. The components that make up the SPM-HDR will change and advance as space
rated components increase in functionality and performance.

Figure 11-2 STRS High Data Rate Integration

A HDR module would provide the throughput capabilities to support the data rate. The level of
reconfigurability will be determined on a case by case basis depending on the level of hardening
required for the mission.

A HDR waveform would be instantiated by the STRS radio as any other waveform. The
configuration information would identify the required hardware and software components and
validate that these are available for use. The waveform application would initiate and complete
the configuration and enable its functionality.

In that the data stream has a high data rate, it is anticipated that a dedicated port will be required.
This port would be configured during the instantiation period described above. The waveform
application on the GPP would simply monitor the activities and become involved only during
maintenance and to report telemetry.

RFM

GPM

SPM-HDR

FPGA/
ASIC

Frequency
Control

Spacecraft
Bus

Data
Bus

ADC/DAC
RF Circuits

Ext. RF Equip.

Antenna

WF

Radio
Command

Mission Specific

SBI
Device

HDR
Device

Waveform API

STRS Infrastructure

Logical HAL Driver Interfaces Data
Control
Signal Data

Physical HAL Interfaces

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 79 of 95

79

11.12 Optical Communications
STRS interfacing to optical communication equipment follows the same techniques shown in
integration with High Data Rate hardware. Figure 5.4.4.3-1 illustrate the functional block
diagrams for an optical-transmit subsystem and an optical-receive subsystem respectively. The
Optical Module would be controlled through the STRS HAL interface that would allow
configuration and control of the digital components for the module, while not being involved in
the actual optical functionality.

Figure 11-3 Optical Transceiver Subsystem

RFM

GPM

SPM-HDR

Spacecraft
Bus

Data
Bus

Ext. Equip.

Steerable
Optics

WF

Radio
Command

Mission Specific

SBI
Device

HDR
Device

Optical
XPDR

Data
Control
Signal Data

Physical HAL Interfaces

WaveformAPI

STRSInfrastructure

Logical HAL Driver Interfaces

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 80 of 95

80

12 Acronyms

Abbreviation Definition
802.x IEEE network interface standards
AEP Application Environment Profile
API Application Program Interface
ASIC Application Specific Integrated Circuit
BIT Built-In Test
BSD Berkeley Software Distribution
BSP Burst Schedule Packets
BTS Base Transceiver Station
C++ a computer programming language

C
4
I Command, Control, Communications, Computers and Intelligence

CF Core Framework
CFG Configuration
COMSEC Communication Security
CORBA Common Object Request Broker Architecture
COTS Commercial Off the Shelf
CPU Central Processing Unit
DCD Device Configuration Descriptor
DMD DomainManager Configuration Descriptor
DoD Department of Defense
DPD Device Package Descriptor
DSP Digital Signal Processor
DTD Document Type Definition
FPGA Field Programmable Gate Array
GIOP General Inter-ORB Protocol
GPP General Purpose Processor
GPS Global Positioning System
HCI Human-Computer Interface
HF ALE High Frequency – Automatic Link Establishment
HH Hours
HQ Have Quick, an electronic counter-countermeasures waveform
HW Hardware

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 81 of 95

81

I/O Input/Output
ICD Interface Control Document
ID Identification, Identifier
IDL Interface Definition Language
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IIOP Internet Inter-ORB Protocol
INFOSEC Information Security
I/O input/output
IOR Interoperable Object Reference
IP Internet Protocol
ISO International Standards Organization
Java Computer Programming Language
JPO Joint Program Office
JTA Joint Technical Architecture
JTR Joint Tactical Radio
JTRS Joint Tactical Radio System
LAPx Link Access Protocol x (where x represents 1 of several protocols defined by

industry
MAC Medium Access Control, a sublayer of the OSI Data Link Layer
MIB Management Information Base
MLS Multi-Level Security
MM Minutes
MSB Most Significant Bit
MSRC Modular Software-Programmable Radio Consortium
MISSI Multilevel Information System Security Initiative
N/A Not Applicable
NAPI Networking Application Programming Interface
NSA National Security Agency
OE Operating Environment
OMG Object Management Group
OO Object Oriented
ORB Object Request Broker
ORD Operational Requirements Document
OS Operating System

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 82 of 95

82

OSD Operational Security Doctrine
OSI Open System Interconnection
OTAR Over-the-air Rekey
PCI Peripheral Component Interconnect (bus)
PMCS Programmable Modular Communication System
PN Pseudo random Noise
POSIX� Portable Operating System Interface
PPP Point-to-Point Protocol
PSE52 Real-time Controller System Profile, defined in IEEE Std 1003.13
QoS Quality of Service
RAM Random Access Memory
RF Radio Frequency
RS-232 Electronic Industries Alliance interface standard
RS-422 Electronic Industries Alliance interface standard
RS-423 Electronic Industries Alliance interface standard
RS-485 Electronic Industries Alliance interface standard
SA Situation Awareness
SAD Software Assembly Descriptor
SCA Software Communications Architecture
SCD Software Component Descriptor
SDD Service Definition Description
SINCGARS Single Channel Ground/Airborne Radio System
SLIP Serial Line Internet Protocol
SNMP Simple Network Management Protocol
SPD Software Package Descriptor
SRD Support and Rationale Document (for the SCA)
SW Software
TBD To Be Determined
TBR To Be Reviewed
TCP Transmission Control Protocol
TOD Time Of Day
TRANSEC Transmission Security
UML Unified Modeling Language
UNIX A computer operating system developed by AT&T Bell Laboratories.
UUID Universally Unique Identifier

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 83 of 95

83

VME VersaModule Eurocard, a 32 bit data bus standard
XML eXtensible Markup Language

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 84 of 95

84

13 Glossary

Application
An application is defined as an executable software program that may contain one or more
modules. The executable software exhibits pre-determined functionality (e.g. a waveform).

Application Program Interface (API)12
A formalized set of software calls and routines that can be referenced by an application program
in order to access supporting system or network services

Architecture
A comprehensive set of functions, components, and design rules according to which radio
communication systems can be organized, designed, constructed, deployed, operated, and
evolved over time. A useful architecture partitions functions and components such that a)
functions are assigned to components clearly and b) physical interfaces among components
correspond to logical interfaces among functions.

Interoperability13
Interoperability allows systems to provide services to and accept services from other systems,
and to use the services to enable them to coexist effectively together.

Module
This term has different meaning based on hardware or software context. Typically, a software
module is a group of common behaviors to that performs a specific set of tasks. A hardware
module is a physical grouping of functionality and components implemented on a single board.

Open Architecture
When functions, interfaces, components, and/or design rules are defined and published.

Open Standards
A published specification officially recognized by national or international organizations.

Portability2

An application is portable across a class of environments to the degree that the effort required to
transport and adapt it to a new environment in the class is less than the effort of redevelopment.

Reliability2

The ability of an item to perform a required function under stated conditions for a specified
length of time.

12 Letter-by-Letter Listing [online]. Available WWW
<URL: http://www.its.bldrdoc.gov/fs-1037/dir-001/_0064.htm> (1996).
13 Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 85 of 95

85

Scalability
Scalability is the degree to which component or functions in an implementation can be sized in
systematic proportions for varying capacities. This paper is identifying scalability to be
applicable while the radio is under development and assembly.

Services
Service applications are software programs running in the system that provide functionality
available for use by other applications.

Waveform
A Waveform is the set of transformations applied to information that is transmitted over the air
and the corresponding set of transformations to convert received signals back to their
information content.

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 86 of 95

86

14 Appendix A - Configuration File Formats
STRS configuration files contain platform and waveform specific information for customization
of installed waveforms. Platform configuration files provide the STRS infrastructure with
information on what devices and modules are currently installed in the system and what device
drivers are required to perform diagnostics, and self tests. These device drivers can also be
persistent and perform all interface responsibilities for the device. Typically, the device driver
constructs the contents of the configuration (CFG) file.

14.1 Platform Configuration Files
An example of the contents of a platform configuration file is shown below:

GPM Configuration File
GPM
Serial Port 1 SP1
Serial Port 2 SP2
SpaceBus Port SBUS
RAM Size 0x007FFFFF # 8M RAM
EEPROM Size 0x003FFFFF # 4M EEPROM
Serial Driver drv/RS422.obj
SpaceBus Driver drv/1553.obj
#Interrupt Masks
#Each card supports an offset with which the GPP can set
#IO values to act as interrupts or GPIO
Intr Reg Offset 0x00400000
SPM Module SPM.CFG
RFM Module RFM.CFG
RFM Module XBND.CFG

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 87 of 95

87

SPM Configuration File – SPM.CFG
SPM
Slot Address 0x80000000
FPGA Addr Offset 0x0F000000
DSP RAM Offset 0x00000000
DSP RAM SIZE 0x0003FFFF # 256K Bytes
FPGA Loader Offset 0x0B000000
Control Port C_SPM1
Data Port D_SPM1
Driver drv/M1_SPM.obj # instantiated at POR
#Interrupt Masks
#list the bits associated with interrupts available to
#be assigned service routines in the DSP.
SPM Intr Reg Offset 0x00040010 #IO word for GPP induced ISRs
Number of Intr IN 2
Number of Intr Out 2

RFM Configuration File – RFM.CFG
RFM1
Slot Address 0xA0000000
Register Offset 0x00000000
Center Freq 2002.33 MHz
Center Freq Word 0x80000000
Freq Steps 5 Hz
High Freq Word 0x800003ff #+5KHz
Low Freq Word 0x7ffffc00 #-5KHz
Control Port C_RFM1
Data Port D_RFM1
Driver drv/M1_RFM.obj

High Speed X-Band Transmitter Configuration File –XBND.CFG
2-Channel X-Band
Slot Address 0xB0000000
Port 1 Offset 0x00040000
Port 2 Offset 0x00050000
Data Rate Select 0x00000020 # offset to control register
Control Port C_X12CHN
Data Port D_X12CHN
Driver drv/M1_X2CHN.obj

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 88 of 95

88

14.2 Waveform Configuration Files

An application configuration file contains specific information that 1) allows STRS to
instantiated the application; 2) provides default configuration values; 3) provides connection
references to ports and services needed by the application. The following is an example of a
configuration file for a waveform named WF1

Waveform #1 Configuration File – wf1.cfg
Waveform1
Command Port WF1 # convention max 8 characters
File apps/wf1.obj
Target host
Priority 120

WF Specific Configuration parameters
Base Frequency 2002.23 MHz
Fwd Data Rate 200 kbps
Rtn Data Rate 100 kbps
WF Status TLM 20 #subaddress for Telemetry data
WF Control SA 20 #subaddress for Control Data

Dependencies
FPGA Load fpga/wf1.bit
DSP Load none
RF Connect RF1
FPGA Connect FPGA
RC Connect RC_TLM

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 89 of 95

89

15 Appendix B - POSIX API Profile

Appendix B provides the POSIX Subset profiles PSE51, PSE52, and PSE53.

Unit of Functionality Interfaces PSE51 PSE52 PSE53
POSIX_C_LANG_JUMP longjmp(), setjmp() X X X

POSIX_C_LANG_MATH

acos(), acosf(), acosh(),
acoshf(), acoshl(),
acosl(),asin(), asinf(), asinh(),
asinhf(), asinhl(), asinl(),
catan(), atan2(), atan2f(),
atan2l(), atanf(),
atanh(),atanhf(), atanhl(),
atanl(), cabs(), cabsf(), cabsl(),
cacos(), cacosf(), cacosh(),
cacoshf(), cacoshl(),cacosl(),
carg(), cargf(), cargl(), casin(),
casinf(), casinh(), casinhf(),
casinhl(), casinl(), catan(),
catanf(), catanh(), catanhf(),
catanhl(), catanl(),cbrt(), cbrtf(),
cbrtl(), ccos(), ccosf(), ccosh(),
ccoshf(),ccoshl(),

 X X

POSIX_C_LANG_MATH

ccosl(), ceil(), ceilf(),
ceill(),cexp(), cexpf(),cexpl(),
cimag(), cimagf(), cimagl(),
clog(), clogf(),clogl(), conj(),
conjf(), conjl(), copysign(),
copysignf(),copysignl(), cos(),
cosf(), cosh(), coshf(), coshl(),
cosl(),cpow(), cpowf(), cpowl(),
cproj(), cprojf(), cprojl(),creal(),
crealf(), creall(), csin(), csinf(),
csinh(),csinhf(), csinhl(), csinl(),
csqrt(), csqrtf(), csqrtl(),ctan(),
ctanf(), ctanh(), ctanhf(),
ctanhl(), ctanl(),erf(), erfc(),
erfcf(), erfcl(), erff(), erfl(),
exp(), exp2(),exp2f(), exp2l(),
expf(), expl(), expm1(),
expm1f(), expm1l(), fabs(),
fabsf(), fabsl(), fdim(),
fdimf(),fdiml(), floor(), floorf(),
floorl(), fma(), fmaf(), fmal(),

 X X

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 90 of 95

90

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_MATH

fmax(), fmaxf(), fmaxl(), fmin(),
fminf(), fminl(),fmod(), fmodf(),
fmodl(), fpclassify(), frexp(),
frexpf(),frexpl(), hypot(),
hypotf(), hypotl(), ilogb(),
ilogbf(),ilogbl(), isfinite(),
isgreater(), isgreaterequal(),
isinf(),isless(), islessequal(),
islessgreater(),
isnan(),isnormal(),
isunordered(), ldexp(), ldexpf(),
ldexpl(),
lgamma(), lgammaf(),
lgammal(), llrint(),
llrintf(),llrintl(), llround(),
llroundf(), llroundl(),
log(),log10(), log10f(), log10l(),
log1p(), log1pf(), log1pl(),log2(),
log2f(), log2l(), logb(), logbf(),
logbl(), logf(),logl(), lrint(),
lrintf(), lrintl(), lround(),
lroundf(),lroundl(), modf(),
modff(), modfl(), nan(),
nanf(),nanl(), nearbyint(),
nearbyintf(), nearbyintl(),
nextafter(), nextafterf(),
nextafterl(), nexttoward(),
nexttowardf(), nexttowardl(),
pow(), powf(),
powl(),remainder(),
remainderf(), remainderl(),
remquo(),remquof(), remquol(),
rint(), rintf(), rintl(), round(),
roundf(), roundl(), scalbln(),
scalblnf(), scalblnl(),scalbn(),
scalbnf(), scalbnl(), signbit(),
sin(), sinf(),sinh(), sinhf(),
sinhl(), sinl(), sqrt(), sqrtf(),
sqrtl(),tan(), tanf(), tanh(),
tanhf(), tanhl(),tanl(),
tgamma(),tgammaf(),tgammal()
, trunc(), truncf(), truncl()

 X X

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 91 of 95

91

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_C_LANG_SUPPORT

abs(), asctime(), asctime_r(),
atof(), atoi(), atol(),atoll(),
bsearch(), calloc(), ctime(),
ctime_r(),difftime(), div(),
feclearexcept(), fegetenv(),
fegetexceptflag(), fegetround(),
feholdexcept(),feraiseexcept(),
fesetenv(), fesetexceptflag(),
fesetround(), fetestexcept(),
feupdateenv(), free(),gmtime(),
gmtime_r(), imaxabs(),
imaxdiv(),
isalnum(), isalpha(), isblank(),
iscntrl(), isdigit(),isgraph(),
islower(), isprint(), ispunct(),
isspace(),isupper(), isxdigit(),
labs(), ldiv(), llabs(), lldiv(),
localeconv(), localtime(),
localtime_r(),
malloc(),memchr(), memcmp(),
memcpy(),
memmove(),memset(),
mktime(), qsort(), rand(),
rand_r(),
realloc(), setlocale(), snprintf(),
sprintf(), srand(),sscanf(),
strcat(), strchr(), strcmp(),
strcoll(), strcpy(),strcspn(),
strerror(), strerror_r(), strftime(),
strlen(),
strncat(), strncmp(), strncpy(),
strpbrk(), strrchr(),
strspn(), strstr(), strtod(),
strtof(), strtoimax(),strtok(),
strtok_r(), strtol(), strtold(),
strtoll(),
strtoul(), strtoull(), strtoumax(),
strxfrm(), time(),tolower(),
toupper(), tzname, tzset(),
va_arg(),va_copy(), va_end(),
va_start(), vsnprintf(), vsprintf(),
vsscanf()

X X X

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 92 of 95

92

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_DEVICE_IO

clearerr(), close(), fclose(),
fdopen(), feof (), ferror(),fflush
(), fgetc(), fgets(), fileno(),
fopen(), fprintf(),fputc(), fputs(),
fread(), freopen(), fscanf(),
fwrite(),getc(), getchar(), gets(),
open(), perror(), printf(),putc(),
putchar(), puts(), read(),
scanf(), setbuf(),setvbuf(),
stderr, stdin, stdout, ungetc(),
vfprintf (),vfscanf(), vprintf(),
vscanf(), write()

X X X

POSIX_EVENT_MGMT
FD_CLR(), FD_ISSET(),
FD_SET(), FD_ZERO(),
pselect(), select()

 X

POSIX_FD_MGMT

dup(), dup2(), fcntl(), fgetpos(),
fseek(), fseeko(),
fsetpos(), ftell(), ftello(),
ftruncate(), lseek(), rewind()

 X X

POSIX_FILE_LOCKING

flockfile(), ftrylockfile(),
funlockfile(), getc_unlocked(),
getchar_unlocked(),
putc_unlocked(),
putchar_unlocked()

X X X

POSIX_FILE_SYSTEM

access(), chdir(), closedir(),
creat(), fpathconf(), fstat(),
getcwd(), link(), mkdir(),
opendir(), pathconf(),readdir(),
readdir_r(), remove(),
rename(),rewinddir(), rmdir(),
stat(), tmpfile(), tmpnam(),
unlink(), utime()

 X X

POSIX_MULTI_PROCESS

_Exit(), _exit(), assert(), atexit(),
clock(), execl(),execle(),
execlp(), execv(), execve(),
execvp(), exit(),fork(),
getpgrp(), getpid(), getppid(),
setsid(), sleep(),
times(), wait(), waitpid()

 X

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 93 of 95

93

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_NETWORKING

accept(), bind(), connect(),
endhostent(), endnetent(),
endprotoent(), endservent(),
freeaddrinfo(),
gai_strerror(), getaddrinfo(),
gethostbyaddr(),
gethostbyname(), gethostent(),
gethostname(),
getnameinfo(), getnetbyaddr(),
getnetbyname(),
getnetent(), getpeername(),
getprotobyname(),
getprotobynumber(),
getprotoent(), getservbyname(),
getservbyport(), getservent(),
getsockname(),
getsockopt(), h_errno, htonl(),
htons(),
if_freenameindex(),
if_indextoname(),
if_nameindex(),
if_nametoindex(),
inet_addr(),inet_ntoa(),
inet_ntop(), inet_pton(), listen(),
ntohl(),ntohs(), recv(),
recvfrom(), recvmsg(),
send(),sendmsg(), sendto(),
sethostent(),
setnetent(),setprotoent(),
setservent(), setsockopt(),
shutdown(),socket(),
sockatmark(), socketpair()

 X

POSIX_PIPE pipe() X

POSIX_SIGNALS

abort(), alarm(), kill(), pause(),
raise(), sigaction(),
sigaddset(), sigdelset(),
sigemptyset(), sigfillset(),
sigismember(), signal(),
sigpending(), sigprocmask(),
sigsuspend(), sigwait()

X X X

POSIX_SIGNAL_JUMP siglongjmp(), sigsetjmp() X

POSIX_SINGLE_PROCESS
confstr(), environ, errno,
getenv(), setenv(), sysconf(),
uname(), unsetenv()

X X X

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 94 of 95

94

Unit of Functionality Interfaces PSE51 PSE52 PSE53

POSIX_THREADS_BASE

pthread_atfork(),
pthread_attr_destroy(),
pthread_attr_getdetachstate(),
pthread_attr_getschedparam(),
pthread_attr_init(),
pthread_attr_setdetachstate(),
pthread_attr_setschedparam(),
pthread_cancel(),
pthread_cleanup_pop(),
pthread_cleanup_push(),
pthread_cond_broadcast(),
pthread_cond_destroy(),
pthread_cond_init(),
pthread_cond_signal(),
pthread_cond_timedwait(),
pthread_cond_wait(),
pthread_condattr_destroy(),
pthread_condattr_init(),
pthread_create(),
pthread_detach(),
pthread_equal(),pthread_exit(),
pthread_getspecific(),
pthread_join(),
pthread_key_create(),
pthread_key_delete(),
pthread_kill(),
pthread_mutex_destroy(),
pthread_mutex_init(),
pthread_mutex_lock(),
pthread_mutex_trylock(),
pthread_mutex_unlock(),
pthread_mutexattr_destroy(),
pthread_mutexattr_init(),
pthread_once(),pthread_self(),
pthread_setcalcelstate(),
pthread_setcanceltype(),
pthread_setspecific(),
pthread_sigmask(),
pthread_testcancel()

X X X

POSIX_THREAD_
MUTEX_EXT

pthread_mutexattr_gettype(),
pthread_mutexattr_settype() X X X

Document No: STRS-00001 Phase 1 Architecture STRS Architecture Description

Document (Preliminary) Effective Date: 12 Dec. 2005 Page 95 of 95

95

Unit of Functionality Interfaces PSE51 PSE52 PSE53

XSI_THREADS_EXT

pthread_attr_getguardsize(),
pthread_attr_getstack(),
pthread_attr_setguardsize(),
pthread_attr_setstack(),
pthread_getconcurrency(),
pthread_setconcurrency()

X X X

